Polarization‐controlled surface plasmon holography

The ability of generating arbitrary surface plasmon (SP) profiles in a controllable manner is of particular interest in designing plasmonic imaging, lithography and forcing devices. During the past decades, holography has gained enormous interest and achievements in free-space three-dimensional displays. Here, by applying a two-dimensional version of holography, we experimentally demonstrate a generic method to control the SP profiles. Through controlling the orientation angles of two separated slits under circular polarization incidence, the amplitude and phase of the excited SPs can be freely manipulated, which allows direct generation of the desired SP profiles. A series of controllable SP holography schemes are theoretically and experimentally demonstrated, where the holographic SP profiles with high imaging quality can be dynamically modulated by varying the circular polarization handedness or orientation angle of linear polarization. The universality and simplicity of the proposed design strategies would offer promising opportunities for practical plasmonic applications.

[1]  Ido Dolev,et al.  Surface-plasmon holographic beam shaping. , 2012, Physical review letters.

[2]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.

[3]  Guoxing Zheng,et al.  Helicity multiplexed broadband metasurface holograms , 2015, Nature Communications.

[4]  Ady Arie,et al.  Shaping plasmonic light beams with near-field plasmonic holograms , 2014 .

[5]  Yu-Hui Chen,et al.  Wavefront shaping of infrared light through a subwavelength hole , 2012, Light: Science & Applications.

[6]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[7]  Chen-Ta Ku,et al.  Direct observation of surface plasmon vortex and subwavelength focusing with arbitrarily-tailored intensity patterns , 2015 .

[8]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[9]  Chris Slinger,et al.  Computer-generated holography as a generic display technology , 2005, Computer.

[10]  F. J. Rodríguez-Fortuño,et al.  Spin–orbit interactions of light , 2015, Nature Photonics.

[11]  Byoungho Lee,et al.  A double‐lined metasurface for plasmonic complex‐field generation , 2016 .

[12]  Xiangang Luo,et al.  Surface plasmon resonant interference nanolithography technique , 2004 .

[13]  Federico Capasso,et al.  Holographic detection of the orbital angular momentum of light with plasmonic photodiodes , 2012, Nature Communications.

[14]  T. Li,et al.  Indefinite Plasmonic Beam Engineering by In-plane Holography , 2016, Scientific reports.

[15]  Qiaofeng Tan,et al.  Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity , 2013, Light: Science & Applications.

[16]  P. Genevet,et al.  Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave. , 2012, Physical review letters.

[17]  Byoungho Lee,et al.  Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. , 2010, Nano letters.

[18]  Ady Arie,et al.  Surface‐plasmon wavefront and spectral shaping by near‐field holography , 2016 .

[19]  Takuo Tanemura,et al.  Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler. , 2011, Nano letters.

[20]  P. Genevet,et al.  Holographic optical metasurfaces: a review of current progress , 2015, Reports on progress in physics. Physical Society.

[21]  S. M. Wang,et al.  Collimated plasmon beam: nondiffracting versus linearly focused. , 2012, Physical review letters.

[22]  F. Nori,et al.  Quantum spin Hall effect of light , 2015, Science.

[23]  Qian-jin Wang,et al.  Plasmonic polarization generator in well-routed beaming , 2015, Light: Science & Applications.

[24]  Zhen Tian,et al.  A perfect metamaterial polarization rotator , 2013 .

[25]  Zhiyuan Li,et al.  Direct method to control surface plasmon polaritons on metal surfaces. , 2014, Optics letters.

[26]  Zhen Tian,et al.  Anomalous Surface Wave Launching by Handedness Phase Control , 2015, Advanced materials.

[27]  Chih-Ming Wang,et al.  Aluminum plasmonic multicolor meta-hologram. , 2015, Nano letters.

[28]  J. Greffet,et al.  Huygens-Fresnel principle for surface plasmons. , 2009, Optics express.

[29]  D. Lara,et al.  Optical nanoprobing via spin-orbit interaction of light , 2010, 2010 International Conference on Advanced Optoelectronics and Lasers.

[30]  G. Bartal,et al.  Metafocusing by a Metaspiral Plasmonic Lens. , 2015, Nano letters.

[31]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[32]  Hui Liu,et al.  Flexible coherent control of plasmonic spin-Hall effect , 2015, Nature Communications.

[33]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[34]  Ai Qun Liu,et al.  High-efficiency broadband meta-hologram with polarization-controlled dual images. , 2014, Nano letters.

[35]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[36]  Daniel Wintz,et al.  Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[37]  Xiaowei Guo,et al.  Large-area surface-plasmon polariton interference lithography. , 2006, Optics letters.

[38]  Chunmei Ouyang,et al.  Broadband Metasurfaces with Simultaneous Control of Phase and Amplitude , 2014, Advanced materials.

[39]  Vladimir M. Shalaev,et al.  Ultra-thin, planar, Babinet-inverted plasmonic metalenses , 2013, Light: Science & Applications.

[40]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[41]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[42]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[43]  Zhen Tian,et al.  Broadband Terahertz Wave Deflection Based on C‐shape Complex Metamaterials with Phase Discontinuities , 2013, Advanced materials.

[44]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.