A monolithic mass tracking formulation for bubbles in incompressible flow

Abstract We devise a novel method for treating bubbles in incompressible flow that relies on the conservative advection of bubble mass and an associated equation of state in order to determine pressure boundary conditions inside each bubble. We show that executing this algorithm in a traditional manner leads to stability issues similar to those seen for partitioned methods for solid–fluid coupling. Therefore, we reformulate the problem monolithically. This is accomplished by first proposing a new fully monolithic approach to coupling incompressible flow to fully nonlinear compressible flow including the effects of shocks and rarefactions, and then subsequently making a number of simplifying assumptions on the air flow removing not only the nonlinearities but also the spatial variations of both the density and the pressure. The resulting algorithm is quite robust, has been shown to converge to known solutions for test problems, and has been shown to be quite effective on more realistic problems including those with multiple bubbles, merging and pinching, etc. Notably, this approach departs from a standard two-phase incompressible flow model where the air flow preserves its volume despite potentially large forces and pressure differentials in the surrounding incompressible fluid that should change its volume. Our bubbles readily change volume according to an isothermal equation of state.

[1]  R. Fedkiw,et al.  A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains , 2000 .

[2]  Ronald Fedkiw,et al.  An unconditionally stable fully conservative semi-Lagrangian method , 2010, J. Comput. Phys..

[3]  Ronald Fedkiw,et al.  An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..

[4]  Ronald Fedkiw,et al.  On Boundary Condition Capturing for Multiphase Interfaces , 2007, J. Sci. Comput..

[5]  Markus H. Gross,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Real-time Simulations of Bubbles and Foam within a Shallow Water Framework , 2022 .

[6]  Ronald Fedkiw,et al.  Two-Way Coupled SPH and Particle Level Set Fluid Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[7]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[8]  Frédéric Gibou,et al.  Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions , 2012, J. Comput. Phys..

[9]  Dimitris N. Metaxas,et al.  Physics based boiling simulation , 2006, SCA '06.

[10]  Ronald Fedkiw,et al.  A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..

[11]  Tim Colonius,et al.  A numerical investigation of unsteady bubbly cavitating nozzle flows , 2002 .

[12]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[13]  Theodore Kim,et al.  A simple boiling module , 2007, SCA '07.

[14]  Ignacio Llamas,et al.  Simulation of bubbles in foam with the volume control method , 2007, ACM Trans. Graph..

[15]  Ronald Fedkiw,et al.  Fully conservative leak-proof treatment of thin solid structures immersed in compressible fluids , 2013, J. Comput. Phys..

[16]  Ronald Fedkiw,et al.  Numerically stable fluid-structure interactions between compressible flow and solid structures , 2011, J. Comput. Phys..

[17]  Peter Smereka,et al.  Axisymmetric free boundary problems , 1997, Journal of Fluid Mechanics.

[18]  Tim Colonius,et al.  Shock propagation through a bubbly liquid in a deformable tube , 2011, Journal of Fluid Mechanics.

[19]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[20]  R. Fedkiw,et al.  A numerical method for two-phase flow consisting of separate compressible and incompressible regions , 2000 .

[21]  Donald H. House,et al.  Better with bubbles: enhancing the visual realism of simulated fluid , 2004, SCA '04.

[22]  Duc Quang Nguyen,et al.  Directable photorealistic liquids , 2004, SCA '04.

[23]  E. Guendelman,et al.  Coupling water and smoke to thin deformable and rigid shells , 2005, SIGGRAPH 2005.

[24]  Jun-Hai Yong,et al.  Simulation of bubbles , 2006, SCA '06.

[25]  Huamin Wang,et al.  Animating bubble interactions in a liquid foam , 2012, ACM Trans. Graph..

[26]  C. Sozou Electrohydrodynamics of a pair of liquid drops , 1975 .

[27]  Eric Johnsen,et al.  Implementation of WENO schemes in compressible multicomponent flow problems , 2005, J. Comput. Phys..

[28]  Ronald Fedkiw,et al.  A method for avoiding the acoustic time step restriction in compressible flow , 2009, J. Comput. Phys..

[29]  Ronald Fedkiw,et al.  So real it'll make you wet , 2006, SIGGRAPH '06.

[30]  Markus H. Gross,et al.  Particle-based fluid-fluid interaction , 2005, SCA '05.

[31]  M. Sussman A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles , 2003 .

[32]  Paul W. Cleary,et al.  Bubbling and frothing liquids , 2007, ACM Trans. Graph..

[33]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[34]  Dinesh Manocha,et al.  Sounding liquids: Automatic sound synthesis from fluid simulation , 2010, TOGS.

[35]  Matthias Teschner,et al.  Unified spray, foam and air bubbles for particle-based fluids , 2012, The Visual Computer.

[36]  Eric Johnsen,et al.  Numerical simulations of non-spherical bubble collapse , 2009, Journal of Fluid Mechanics.

[37]  Ronald Fedkiw,et al.  Simulating free surface flow with very large time steps , 2012, SCA '12.

[38]  Tim Colonius,et al.  Numerical simulation of shock propagation in a polydisperse bubbly liquid , 2011 .

[39]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[40]  Chang-Hun Kim,et al.  Discontinuous fluids , 2005, ACM Trans. Graph..

[41]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[42]  Ronald Fedkiw,et al.  An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids , 2013, J. Comput. Phys..

[43]  Chang-Hun Kim,et al.  Interchangeable SPH and level set method in multiphase fluids , 2009, The Visual Computer.

[44]  Chang-Hun Kim,et al.  Controlling shapes of air bubbles in a multi-phase fluid simulation , 2012, The Visual Computer.

[45]  Ronald Fedkiw,et al.  A General Technique for Eliminating Spurious Oscillations in Conservative Schemes for Multiphase and Multispecies Euler Equations , 2000 .

[46]  Robert Bridson,et al.  MultiFLIP for energetic two-phase fluid simulation , 2012, TOGS.

[47]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[48]  Ronald Fedkiw,et al.  Multiple interacting liquids , 2006, ACM Trans. Graph..

[49]  J. G. Hnat,et al.  Spherical cap bubbles and skirt formation , 1976 .

[50]  S. Zaleski,et al.  Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .

[51]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[52]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[53]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[54]  Hyeongseok Ko,et al.  A practical simulation of dispersed bubble flow , 2010 .

[55]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .

[56]  Tim Colonius,et al.  Modelling bubble clusters in compressible liquids , 2010, Journal of Fluid Mechanics.

[57]  Dimitris N. Metaxas,et al.  Simulation of two‐phase flow with sub‐scale droplet and bubble effects , 2009, Comput. Graph. Forum.

[58]  C. Brennen Cavitation and Bubble Dynamics: Preface , 2013 .

[59]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[60]  S. Osher,et al.  Spatially adaptive techniques for level set methods and incompressible flow , 2006 .

[61]  Frank Losasso,et al.  A fast and accurate semi-Lagrangian particle level set method , 2005 .

[62]  Ronald Fedkiw,et al.  A symmetric positive definite formulation for monolithic fluid structure interaction , 2011, J. Comput. Phys..

[63]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[64]  Chang-Hun Kim,et al.  Animation of Bubbles in Liquid , 2003, Comput. Graph. Forum.