DISCOVERY OF FOUR kpc-SCALE BINARY ACTIVE GALACTIC NUCLEI

We report the discovery of four kpc-scale binary active galactic nuclei (AGNs). These objects were originally selected from the Sloan Digital Sky Survey based on double-peaked [O III] {lambda}{lambda}4959, 5007 emission lines in their fiber spectra. The double peaks could result from pairing active supermassive black holes (SMBHs) in a galaxy merger or could be due to bulk motions of narrow-line region gas around a single SMBH. Deep near-infrared (NIR) images and optical slit spectra obtained from the Magellan 6.5 m and the Apache Point Observatory 3.5 m telescopes strongly support the binary SMBH scenario for the four objects. In each system, the NIR images reveal tidal features and double stellar components with a projected separation of several kpc, while optical slit spectra show two Seyfert 2 nuclei spatially coincident with the stellar components, with line-of-sight velocity offsets of a few hundred km s{sup -1}. These objects were drawn from a sample of only 43 objects, demonstrating the efficiency of this technique to find kpc-scale binary AGNs.

[1]  Tod R. Lauer,et al.  The centers of early-type galaxies with HST. IV. Central parameter relations , 1996, astro-ph/9610055.

[2]  Yue Shen,et al.  TYPE 2 ACTIVE GALACTIC NUCLEI WITH DOUBLE-PEAKED [O iii] LINES: NARROW-LINE REGION KINEMATICS OR MERGING SUPERMASSIVE BLACK HOLE PAIRS? , 2009, 0908.2426.

[3]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[4]  A. Myers,et al.  Quasar Clustering at 25 h−1 kpc from a Complete Sample of Binaries , 2007, 0709.3474.

[5]  T. Conrow,et al.  IRAS Faint Source Survey, Explanatory supplement version 2 , 1992 .

[6]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[7]  A. Myers,et al.  SDSS J1254+0846: A BINARY QUASAR CAUGHT IN THE ACT OF MERGING , 2010, 1001.1738.

[8]  Donald E. Osterbrock,et al.  Spectral Classification of Emission-Line Galaxies , 1987 .

[9]  R. Cameron,et al.  The intracluster magnetic field power spectrum in Abell 665 , 2007, 0709.2652.

[10]  Yue Shen SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 SUPERMASSIVE BLACK HOLES IN THE HIERARCHICAL UNIVERSE: A GENERAL FRAMEWORK AND OBSERVATIONAL TESTS , 2022 .

[11]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[12]  National Radio Astronomy Observatory,et al.  A Compact Supermassive Binary Black Hole System , 2006, astro-ph/0604042.

[13]  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[14]  Yan-mei Chen,et al.  ACTIVE GALACTIC NUCLEI WITH DOUBLE-PEAKED NARROW LINES: ARE THEY DUAL ACTIVE GALACTIC NUCLEI? , 2009, 0910.0580.

[15]  L. Maraschi,et al.  Arp 299: A Second Merging System with Two Active Nuclei? , 2003, astro-ph/0306436.

[16]  A. Toomre,et al.  Galactic Bridges and Tails , 1972 .

[17]  M. Milosavljevic,et al.  Formation of Galactic Nuclei , 2001, astro-ph/0103350.

[18]  R. Bender,et al.  CORRELATIONS BETWEEN SUPERMASSIVE BLACK HOLES, VELOCITY DISPERSIONS, AND MASS DEFICITS IN ELLIPTICAL GALAXIES WITH CORES , 2009, 0901.3778.

[19]  Piero Madau,et al.  The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation , 2002, astro-ph/0207276.

[20]  J. Brinkmann,et al.  Binary Quasars in the Sloan Digital Sky Survey: Evidence for Excess Clustering on Small Scales , 2005, astro-ph/0504535.

[21]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[22]  H. Schmitt,et al.  RADIAL VELOCITY OFFSETS DUE TO MASS OUTFLOWS AND EXTINCTION IN ACTIVE GALACTIC NUCLEI , 2009, 0911.0675.

[23]  Self-regulated Growth of Supermassive Black Holes in Galaxies as the Origin of the Optical and X-Ray Luminosity Functions of Quasars , 2003, astro-ph/0304156.

[24]  Richard L. White,et al.  A Catalog of 1.4 GHz Radio Sources from the FIRST Survey , 1997 .

[25]  S. Veilleux,et al.  The Biconical Outflow in the Seyfert Galaxy NGC 2992 , 2000, astro-ph/0010134.

[26]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[27]  Wendy L. Freedman,et al.  The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.

[28]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[29]  G. Kauffmann,et al.  A unified model for the evolution of galaxies and quasars , 1999, astro-ph/9906493.

[30]  J. Newman,et al.  INSPIRALLING SUPERMASSIVE BLACK HOLES: A NEW SIGNPOST FOR GALAXY MERGERS , 2008, 0810.3235.

[31]  C. Conselice,et al.  The DEEP2 Galaxy Redshift Survey: AEGIS Observations of a Dual AGN at z = 0.7 , 2006, astro-ph/0608380.

[32]  S. Komossa,et al.  NARROW DOUBLE-PEAKED EMISSION LINES OF SDSS J131642.90+175332.5: SIGNATURE OF A SINGLE OR A BINARY AGN IN A MERGER, JET–CLOUD INTERACTION, OR UNUSUAL NARROW-LINE REGION GEOMETRY , 2009, 0908.3140.

[33]  M. Inoue,et al.  VLA observations of the multiple jet galaxy 3C 75 , 1985 .

[34]  Doug Tody,et al.  The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.

[35]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[36]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[37]  Marc Davis,et al.  Science Objectives and Early Results of the DEEP2 Redshift Survey , 2002, SPIE Astronomical Telescopes + Instrumentation.

[38]  M. Rees,et al.  Massive black hole binaries in active galactic nuclei , 1980, Nature.