Axioms and fundamental equations of image processing

Image-processing transforms must satisfy a list of formal requirements. We discuss these requirements and classify them into three categories: “architectural requirements” like locality, recursivity and causality in the scale space, “stability requirements” like the comparison principle and “morphological requirements”, which correspond to shape-preserving properties (rotation invariance, scale invariance, etc.). A complete classification is given of all image multiscale transforms satisfying these requirements. This classification yields a characterization of all classical models and includes new ones, which all are partial differential equations. The new models we introduce have more invariance properties than all the previously known models and in particular have a projection invariance essential for shape recognition. Numerical experiments are presented and compared. The same method is applied to the multiscale analysis of movies. By introducing a property of Galilean invariance, we find a single multiscale morphological model for movie analysis.

[1]  R. E. Graham,et al.  Snow removal-A noise-stripping process for picture signals , 1962, IRE Trans. Inf. Theory.

[2]  R. Hartshorne Foundations of projective geometry , 1967 .

[3]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[4]  A. Rosenfeld,et al.  Edge and Curve Detection for Visual Scene Analysis , 1971, IEEE Transactions on Computers.

[5]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[7]  K. Höllig,et al.  A Diffusion Equation with a Nonmonotone Constitutive Function , 1983 .

[8]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[9]  J. Canny Finding Edges and Lines in Images , 1983 .

[10]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[11]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[12]  Andrew P. Witkin,et al.  Analyzing Oriented Patterns , 1985, International Joint Conference on Artificial Intelligence.

[13]  Guy Barles,et al.  Remarks on a flame propagation model , 1985 .

[14]  Petros Maragos,et al.  Tutorial on advances in morphological image processing and analysis (Invited Paper) , 1987 .

[15]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Farzin Mokhtarian,et al.  Scale-Based Description and Recognition of Planar Curves and Two-Dimensional Shapes , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Achim Hummel,et al.  Representations Based on Zero-Crossing in Scale-Space-M , 2018, CVPR 1986.

[18]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[20]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[21]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[22]  David J. Heeger,et al.  Optical flow from spatialtemporal filters , 1987 .

[23]  Alessandro Verri,et al.  Against Quantitative Optical Flow , 1987 .

[24]  J. Morel,et al.  Segmentation of images by variational methods: a constructive approach. , 1988 .

[25]  David Lee,et al.  Computational Aspects Of Determining Optical Flow , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[26]  Yehezkel Lamdan,et al.  Object recognition by affine invariant matching , 2011, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Sergei Fogel,et al.  A Nonlinear Approach To The Motion Correspondence Problem , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[28]  Alan L. Yuille,et al.  The Motion Coherence Theory , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[29]  Isaac Weiss,et al.  Projective invariants of shapes , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  Petros Maragos,et al.  Pattern Spectrum and Multiscale Shape Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[32]  Charles R. Dyer,et al.  Computing spatiotemporal surface flow , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[33]  H. Ishii,et al.  Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains , 1991 .

[34]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[36]  Ajit Singh,et al.  An estimation-theoretic framework for image-flow computation , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[37]  Y. Giga,et al.  Motion of hypersurfaces and geometric equations , 1990 .

[38]  Alessandro Verri,et al.  Computing optical flow from an overconstrained system of linear algebraic equations , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[39]  Charles R. Giardina,et al.  Discrete Black and White Object Recognition via Morphological Functions , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Mandyam D. Srinath,et al.  Partial Shape Classification Using Contour Matching in Distance Transformation , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  David A. Forsyth,et al.  Invariant Descriptors for 3D Object Recognition and Pose , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Eamon B. Barrett,et al.  General methods for determining projective invariants in imagery , 1991, CVGIP Image Underst..

[43]  John K. Tsotsos,et al.  Shape representation and recognition from curvature , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1991 .

[45]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[46]  Philippe Saint-Marc,et al.  Adaptive Smoothing: A General Tool for Early Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  M. A. Snyder On the Mathematical Foundations of Smoothness Constraints for the Determination of Optical Flow and for Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  F. Guichard,et al.  Axiomatisation et nouveaux opérateurs de la morphologie mathématique , 1992 .

[49]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[50]  Luis Alvarez,et al.  Axiomes et 'equations fondamentales du traitement d''images , 1992 .

[51]  P. Lions,et al.  Equations fondamentales de l'analyse multiéchelle des films , 1992 .

[52]  Benjamin B. Kimia,et al.  On the evolution of curves via a function of curvature , 1992 .

[53]  B. Kimia Toward a computational theory of shape , 1992 .

[54]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[55]  Farzin Mokhtarian,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[57]  Yun-Gang Chen,et al.  Numerical Analysis for Motion of a Surface by Its Mean Curvature , 1993 .

[58]  G. Sapiro,et al.  On affine plane curve evolution , 1994 .