Influence of the fiber geometry on the macroscopic elastic and thermal properties
暂无分享,去创建一个
[1] D. Jeulin,et al. Microstructure-induced hotspots in the thermal and elastic responses of granular media , 2013 .
[2] Julien Yvonnet,et al. A critical comparison of several numerical methods for computing effective properties of highly heterogeneous materials , 2013, Adv. Eng. Softw..
[3] D. Jeulin,et al. Imaging and 3D morphological analysis of collagen fibrils , 2012, Journal of microscopy.
[4] J. Nyblom,et al. A STOCHASTIC SHAPE AND ORIENTATION MODEL FOR FIBRES WITH AN APPLICATION TO CARBON NANOTUBES , 2012 .
[5] Hellen Altendorf,et al. 3D morphological analysis and modeling of random fiber networks: applied on glass fiber reinforced composites , 2011 .
[6] J. Renard,et al. Étude numérique et statistique du comportement d'un composite thermoplastique , 2011 .
[7] D. Jeulin. Variance scaling of Boolean random varieties , 2011 .
[8] Dominique Jeulin,et al. Stochastic Modeling of a Glass Fiber Reinforced Polymer , 2011, ISMM.
[9] Dominique Jeulin,et al. 3D DIRECTIONAL MATHEMATICAL MORPHOLOGY FOR ANALYSIS OF FIBER ORIENTATIONS , 2011 .
[10] Dominique Jeulin,et al. Random-walk-based stochastic modeling of three-dimensional fiber systems. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] Joachim Ohser,et al. 3D Images of Materials Structures: Processing and Analysis , 2009 .
[12] D. Jeulin,et al. Elastic behavior of composites containing Boolean random sets of inhomogeneities , 2009 .
[13] P. P. Castañeda,et al. Effective-medium theory for infinite-contrast two-dimensionally periodic linear composites with strongly anisotropic matrix behavior : Dilute limit and crossover behavior , 2008, 0804.2817.
[14] F. Willot,et al. Fast Fourier Transform computations and build-up of plastic deformation in 2D, elastic-perfectly plastic, pixelwise disordered porous media , 2008, 0802.2488.
[15] E. Barbero. Finite element analysis of composite materials , 2007 .
[16] Andreas Wiegmann,et al. Design of acoustic trim based on geometric modeling and flow simulation for non-woven , 2006 .
[17] Dominique Jeulin,et al. Apparent and effective physical properties of heterogeneous materials: Representativity of samples of two materials from food industry , 2006 .
[18] Inderjit S. Dhillon,et al. Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..
[19] Peter Wriggers,et al. An Introduction to Computational Micromechanics , 2004 .
[20] Hervé Moulinec,et al. Comparison of FFT-based methods for computing the response of composites with highly contrasted mechanical properties , 2003 .
[21] D. Jeulin,et al. Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .
[22] G. Milton. The Theory of Composites , 2002 .
[23] Hervé Moulinec,et al. A computational scheme for linear and non‐linear composites with arbitrary phase contrast , 2001 .
[24] Graeme W. Milton,et al. A fast numerical scheme for computing the response of composites using grid refinement , 1999 .
[25] S. Nemat-Nasser,et al. Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .
[26] D. Ko,et al. Robust Estimation of the Concentration Parameter of the Von Mises-Fisher Distribution , 1992 .
[27] R. Hill. A self-consistent mechanics of composite materials , 1965 .
[28] S. Shtrikman,et al. A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .
[29] D. Jeulin,et al. 3d Modeling of Dense Packings of Bended Fibers , 2014 .
[30] S. Schmauder,et al. Micromechanics and Nanosimulation of Metals and Composites , 2008 .
[31] R. M. Mayer,et al. Design with Reinforced Plastics , 1993 .
[32] Aboundi,et al. Book Reviews : Mechanics of Composite Materials: R.M. Jones McGraw-Hill Book Co., New York, 1975 , 1980 .
[33] Toshio Mura,et al. Micromechanics of defects in solids , 1982 .
[34] P. Germain,et al. Cours de mécanique des milieux continus , 1973 .