Renormalized Energy and Peach-Köhler Forces for Screw Dislocations with Antiplane Shear

We present a variational framework for studying screw dislocations subject to antiplane shear. Using a classical model developed by Cermelli and Gurtin, methods of Calculus of Variations are exploited to prove existence of solutions, and to derive a useful expression of the Peach-K\"ohler forces acting on a system of dislocation. This provides a setting for studying the dynamics of the dislocations, which is done in a forthcoming work.

[1]  Morton E. Gurtin,et al.  The nature of configurational forces , 1995 .

[2]  M. Peach,et al.  THE FORCES EXERTED ON DISLOCATIONS AND THE STRESS FIELDS PRODUCED BY THEM , 1950 .

[3]  Marcello Ponsiglione,et al.  Ginzburg-Landau functionals and renormalized energy: A revised Γ-convergence approach , 2014 .

[4]  Adriana Garroni,et al.  A Variational Model for Dislocations in the Line Tension Limit , 2006 .

[5]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[6]  M. Cicalese,et al.  Variational equivalence between Ginzburg-Landau, XY spin systems and screw dislocations energies , 2009, 0907.5548.

[7]  Adriana Garroni,et al.  Γ-Limit of a Phase-Field Model of Dislocations , 2005, SIAM J. Math. Anal..

[8]  Lawrence C. Evans,et al.  Weak convergence methods for nonlinear partial differential equations , 1990 .

[9]  Frank Reginald Nunes Nabarro,et al.  Theory of crystal dislocations , 1967 .

[10]  Morton E. Gurtin,et al.  The Motion of Screw Dislocations in Crystalline Materials Undergoing Antiplane Shear: Glide, Cross‐Slip, Fine Cross‐Slip , 1999 .

[11]  Timothy Blass,et al.  Dynamics for Systems of Screw Dislocations , 2014, SIAM J. Appl. Math..

[12]  Brian Van Koten,et al.  A Computational and Theoretical Investigation of the Accuracy of Quasicontinuum Methods , 2010, 1012.6031.

[13]  Simone Cacace,et al.  A multi-phase transition model for dislocations with interfacial microstructure , 2009 .

[14]  S. Conti,et al.  Singular Kernels, Multiscale Decomposition of Microstructure, and Dislocation Models , 2010, 1003.1917.

[15]  C. Zeppieri,et al.  Line-tension model for plasticity as the -limit of a nonlinear dislocation energy , 2012 .

[16]  A. Garroni,et al.  Γ-Convergence Analysis of Systems of Edge Dislocations: the Self Energy Regime , 2012 .

[17]  Haim Brezis,et al.  Tourbillons de Ginzburg-Landau et énergie renormalisée , 1993 .

[18]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[19]  Giovanni Leoni,et al.  Renormalized Energy and Forces on Dislocations , 2005, SIAM J. Math. Anal..

[20]  Caterina Ida Zeppieri,et al.  Line-Tension Model for Plasticity as the Gamma-Limit of a Nonlinear Dislocation Energy , 2012, SIAM J. Math. Anal..

[21]  M. Peletier,et al.  Asymptotic Behaviour of a Pile-Up of Infinite Walls of Edge Dislocations , 2012, Archive for Rational Mechanics and Analysis.

[22]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[23]  Sylvia Serfaty,et al.  Limiting vorticities for the Ginzburg-Landau equations , 2003 .

[24]  Giovanni Leoni,et al.  Gradient theory for plasticity via homogenization of discrete dislocations , 2008, 0808.2361.

[25]  Matteo Focardi,et al.  A 1D Macroscopic Phase Field Model for Dislocations and a Second Order Γ-Limit , 2008, Multiscale Model. Simul..