Multi-method approach for high resolution 3D data based process analyses of compound rock slides

<p>The use of high resolution 3D point clouds and digital terrain models (DTM) from laserscanning or photogrammetry becomes more and more state of the art in landslide studies. Based on a multi-temporal terrestrial laserscanning (TLS) dataset of the deep-seated compound rockslide Laatsch, South Tyrol, we present a multi-method approach to characterize processes such as sliding, falling, toppling, and flows. Sliding is the predominant process of the Laatsch rockslide, accompanied by secondary processes such as rockfall, debris flows and erosion. The presented methods are applicable to all kind of 3D point clouds and not limited to TLS data. For remote sensing-based landslide analyses a distinction between two classes of surface processes is necessary: i) processes where the original surface is destroyed and no correlations between the shape and texture of the pre- and post-failure surfaces can be found (falls, rapid flows, rapid slides) and ii) processes where the surface is displaced without major surface changes (slow slides, slow flows and toppling). For processes where the original surface is destroyed, the distance between the pre- and post-failure terrain surface is measured with the aim to delineate the scarp and depositional area, and to quantify the failure volume as well as the scarp thickness. With DTMs of differences (DoD), the distance is measured along the plumb line. DoDs can be used to quickly and reliably assess the volume and extent of fall processes on flat to moderate slopes. For steep or even overhanging terrain, a 3D distance measurement approach must be used, where the distance is measured along the local surface normal. After 3D distance measurement, the volume of steep scarp areas can be calculated by first rotating, the point cloud into the horizontal plane (by making use of the average surface normal) and by interpolating the rotated 3D distance measurement values into a grid. Summing up the distances and multiplying with the cell area of the grid yields the scrap rupture volume. Remote sensing-based analyses of sliding and toppling processes are more complex compared to fall processes because the displaced surface patch must be detected in both surveys. Displacement analyses based on image correlation of ambient occlusion shaded relief images, together with DTMs of both epochs, are used to analyse the displacement of the entire rockslide area. The result is a map with displacement vectors. Disadvantages of image correlation are the coarse spatial resolution and the inability, as it is a 2.5D approach, to deal with steep slope parts. To analyse the displacement and toppling of steep rock walls a combination of the 3D distance measurement approach and an iterative closest point (ICP) based approach is applied. The 3D distance measurement values are clustered and used for a segmentation of the point cloud. In a next step, the ICP is applied on each of the resulting segments. This approach can deal with 3D displacements. The results are still sensitive towards the geometric contrast within the segments and not fully automated yet.</p>