Deformation and nano-rheology of red blood cells: an AFM investigation.

[1]  V. Moy,et al.  Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. , 2006, Scanning.

[2]  H. El-Shall,et al.  Atomic force microscopy measurement of the elastic properties of the kidney epithelial cells. , 2005, Journal of colloid and interface science.

[3]  C. Prestidge,et al.  Interaction forces, deformation and nano-rheology of emulsion droplets as determined by colloid probe AFM. , 2004, Advances in colloid and interface science.

[4]  R. Dagastine,et al.  Forces between two oil drops in aqueous solution measured by AFM. , 2004, Journal of colloid and interface science.

[5]  D. Chan,et al.  Forces between a rigid probe particle and a liquid interface: comparison between experiment and theory , 2003 .

[6]  Y. Dufrêne,et al.  Probing microbial cell surface charges by atomic force microscopy , 2002 .

[7]  B. Logan,et al.  Contributions of Bacterial Surface Polymers, Electrostatics, and Cell Elasticity to the Shape of AFM Force Curves , 2002 .

[8]  P. Attard,et al.  An AFM study of the deformation and nanorheology of cross-linked PDMS droplets , 2002 .

[9]  P. Luckham,et al.  Imaging the surface details of red blood cells with atomic force microscopy , 2002 .

[10]  W. Kraus,et al.  Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. , 2001, Journal of biomechanics.

[11]  R C Macdonald,et al.  Atomic force microscopy of the erythrocyte membrane skeleton , 2001, Journal of microscopy.

[12]  C. Prestidge,et al.  Determination of the Separation in Colloid Probe Atomic Force Microscopy of Deformable Bodies , 2001 .

[13]  P. Luckham,et al.  Imaging erythrocytes under physiological conditions by atomic force microscopy. , 2001, Biochimica et biophysica acta.

[14]  J. Simeon,et al.  Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton. , 2001, Biophysical journal.

[15]  P. Attard,et al.  Interaction and deformation of viscoelastic particles: nonadhesive particles. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  E. Ben-Jacob,et al.  Atomic force pulling: probing the local elasticity of the cell membrane , 2000, European Biophysics Journal.

[17]  G. Truskey,et al.  Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. , 2000, Biophysical journal.

[18]  S. Hénon,et al.  A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. , 1999, Biophysical journal.

[19]  Kuypers Fa Red cell membrane damage. , 1998 .

[20]  M Grattarola,et al.  Mechanical and morphological properties of living 3T6 cells probed via scanning force microscopy , 1997, Microscopy research and technique.

[21]  P. Vandenberghe,et al.  Imaging red blood cells with the atomic force microscope , 1996, British journal of haematology.

[22]  V. Parpura,et al.  Membrane deformation of living glial cells using atomic force microscopy , 1996, Journal of microscopy.

[23]  E. Sackmann,et al.  Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition. , 1995, Biophysical journal.

[24]  Sackmann,et al.  Spectral analysis of erythrocyte flickering in the 0.3-4- microm-1 regime by microinterferometry combined with fast image processing. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[25]  Timothy Senden,et al.  Measurement of forces in liquids using a force microscope , 1992 .

[26]  E. Evans Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. , 1983, Biophysical journal.

[27]  W Groner,et al.  New optical technique for measuring erythrocyte deformability with the ektacytometer. , 1980, Clinical chemistry.

[28]  R. Waugh,et al.  Elastic area compressibility modulus of red cell membrane. , 1976, Biophysical journal.

[29]  Robert B. Meyer,et al.  FREEDERICKSZ TRANSITION OF A HOMEOTROPIC NEMATIC LIQUID CRYSTAL IN ROTATING MAGNETIC FIELDS , 1975 .

[30]  H Schmid-Schönbein,et al.  A counter-rotating "rheoscope chamber" for the study of the microrheology of blood cell aggregation by microscopic observation and microphotometry. , 1973, Microvascular research.

[31]  P K Hansma,et al.  Measuring the viscoelastic properties of human platelets with the atomic force microscope. , 1996, Biophysical journal.

[32]  D Koutsouris,et al.  Determination of erythrocyte transit times through micropores. I--Basic operational principles. , 1988, Biorheology.