Instrumented Taylor impact test for measuring stress-strain curve through single trial

[1]  J. R. Klepaczko,et al.  A unified analytic and numerical approach to specimen behaviour in the Split-Hopkinson pressure bar , 1986 .

[2]  William K. Rule,et al.  An elementary theory for the Taylor impact test , 1998 .

[3]  Geoffrey Ingram Taylor,et al.  The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  Joseph C. Foster,et al.  An engineering analysis of plastic wave propagation in the Taylor test , 1997 .

[5]  C. K. H. Dharan,et al.  Determination of stress-strain characteristics at very high strain rates , 1970 .

[6]  Ian A. Ashcroft,et al.  A computational determination of the Cowper–Symonds parameters from a single Taylor test , 2013 .

[8]  W. Mock,et al.  Experimental and computational study of the impact deformation of titanium Taylor cylinder specimens , 1994 .

[9]  J. E. Field,et al.  Failure mechanisms in ductile and brittle materials during Taylor impact , 2003 .

[10]  L. Pochhammer,et al.  Ueber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder. , 1876 .

[11]  A. Maranon,et al.  An engineering model for the penetration of a rigid-rod into a Cowper–Symonds low-strength material , 2015 .

[12]  M. Boyce,et al.  Mechanics of Taylor impact testing of polycarbonate , 2007 .

[13]  S. Chocron,et al.  Dynamic Response of Aluminum 5083 During Taylor Impact Using Digital Image Correlation , 2018 .

[14]  D. J. Allen,et al.  Optimizing material strength constants numerically extracted from taylor impact data , 1997 .

[15]  L. M. Barker,et al.  Laser interferometer for measuring high velocities of any reflecting surface , 1972 .

[16]  Michael Brünig,et al.  Numerical simulation of Taylor impact tests , 2007 .

[17]  J. E. Field,et al.  Validation of a path-dependent constitutive model for FCC and BCC metals using "symmetric" Taylor impact , 2000 .

[18]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[19]  H. Couque Experimental and numerical analyses of the dynamic failure processes of symmetric Taylor impact specimens , 2018 .

[20]  P. J. Maudlin,et al.  High–rate material modelling and validation using the Taylor cylinder impact test , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  A. Rusinek,et al.  Taylor’s Test Technique for Dynamic Characterization of Materials: Application to Brass , 2016, Experimental Techniques.

[22]  N. Bourne,et al.  Taylor impact of polyether ether ketone , 2006 .

[23]  H. Kolsky An Investigation of the Mechanical Properties of Materials at very High Rates of Loading , 1949 .

[24]  P. J. Maudlin,et al.  On the modeling of the Taylor cylinder impact test for orthotropic textured materials: experiments and simulations , 1999 .

[25]  A. Shaw,et al.  Taylor impact test revisited: Determination of plasticity parameters for metals at high strain rate , 2020 .

[26]  K. Sakino Deformation Mechanism of SS400 Steel at Very High Strain Rates Using Activation Volume , 2015 .

[27]  William G. Proud,et al.  Symmetrical Taylor impact studies of copper , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Selection of Densification Strain to Predict Dynamic Crushing Stress at High Impact Velocity of ALPORAS Aluminium Foam , 2014 .

[29]  Hervé Couque,et al.  On the importance of recrystallization to reproduce the Taylor impact specimen shape of a pure nickel , 2015 .

[30]  K. Thoma,et al.  Material characterization and constitutive modelling of ductile high strength steel for a wide range of strain rates , 2005 .

[31]  Ikjin Lee,et al.  Characterization of flow stress at ultra-high strain rates by proper extrapolation with Taylor impact tests , 2016 .

[32]  Alexander P. Moore,et al.  Anisotropy and Strain Localization in Dynamic Impact Experiments of Tantalum Single Crystals , 2018, Scientific Reports.

[33]  J. Janiszewski,et al.  Analysis of deformation history and damage initiation for 6082-T6 aluminium alloy loaded at classic and symmetric Taylor impact test conditions , 2015 .

[34]  George T. Gray,et al.  Low-symmetry plastic deformation in BCC tantalum: experimental observations, modeling and simulations , 2003 .

[35]  Ikjin Lee,et al.  Characterization of Hardening Behaviors of 4130 Steel, OFHC Copper, Ti6Al4V Alloy Considering Ultra-High Strain Rates and high Temperatures , 2017 .

[36]  J W House,et al.  Film data reduction from Taylor impact tests , 1999 .

[37]  John W. Gillespie,et al.  Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment , 2003 .

[38]  Wei Zhang,et al.  Experimental and numerical investigation on the deformation and failure behavior in the Taylor test , 2011 .

[39]  Charles E. Anderson,et al.  Material characterisation and constitutive modelling of a tungsten-sintered alloy for a wide range of strain rates , 2008 .

[40]  H. Huh,et al.  Shear Stress Hardening Curves of AISI 4130 Steel at Ultra-high Strain Rates with Taylor Impact Tests , 2021 .