Forest Structure, Wood Standing Stock, and Tree Biomass in Different Restoration Systems in the Brazilian Atlantic Forest

Reliable estimates of tree growth and wood yield are fundamental to support the management of restored forests and better reconcile the objectives of recovering biodiversity with the provision of ecosystem services. In this study, wood standing volumes and tree biomass stocks were estimated in different ecological restoration systems and at two sites with contrasting soil fertility, in order to evaluate the potential trade-offs between biodiversity and forest production. At each site, a complete randomized block design, with three replications of six treatments, was established in 1997–1998: direct seeding (DIRS), high-diversity tree plantation (HDIV), modified “Taungya” agroforestry system (AFS), mixed plantation with timber and firewood species (MIX), managed agroforestry system (AFSm) and managed mixed plantation (MIXm). We inventoried all trees with diameter at breast height (DBH) ≥ 5 cm in 450 m2 per treatment per plot, 19–20 years after establishment, using site-specific allometric models. Significant site effects were found for tree height, tree density and wood volume. Restoration systems (treatments) affected forest structure and forest productivity. Higher wood stock and biomass tree were observed in the less complex system (DIRS), while AFSm and HDIV reconciled higher species richness and diversity with good wood volume yields and tree biomass.

[1]  L. Aragão,et al.  Carbon-focused conservation may fail to protect the most biodiverse tropical forests , 2018, Nature Climate Change.

[2]  Oliver R. Wearn,et al.  High carbon stock forests provide co-benefits for tropical biodiversity , 2018 .

[3]  Stephen E. Fick,et al.  Every restoration is unique: testing year effects and site effects as drivers of initial restoration trajectories , 2017 .

[4]  Stephanie Mansourian,et al.  Forest Landscape Restoration: increasing the positive impacts of forest restoration or simply the area under tree cover? , 2017 .

[5]  J. Terborgh,et al.  Diversity and carbon storage across the tropical forest biome , 2017, Scientific Reports.

[6]  Renata Evangelista de Oliveira,et al.  AGROFORESTRY AS A TOOL FOR RESTORATION IN ATLANTIC FOREST: CAN WE FIND MULTI-PURPOSE SPECIES? , 2016 .

[7]  Ricardo Ribeiro Rodrigues,et al.  Balancing economic costs and ecological outcomes of passive and active restoration in agricultural landscapes: the case of Brazil , 2016 .

[8]  V. Ceron,et al.  Chuva e banco de sementes do solo em diferentes sistemas de restauração ecológica da floresta estacional semidecidual , 2015 .

[9]  J. Stape,et al.  Silvicultural opportunities for increasing carbon stock in restoration of Atlantic forests in Brazil , 2015 .

[10]  R. Oliveira Desempenho ecofisiológico de mudas de euterpe edulis martius de diferentes estádios de desenvolvimento e implicações para a restauração ecológica , 2015 .

[11]  J. Parrotta,et al.  Influence of Removal of a Non-native Tree Species Mimosa caesalpiniifolia Benth. on the Regenerating Plant Communities in a Tropical Semideciduous Forest Under Restoration in Brazil , 2015, Environmental Management.

[12]  G. Durigan,et al.  Indicators of restoration success in riparian tropical forests using multiple reference ecosystems , 2015 .

[13]  Luiz Alberto Blanco Jorge,et al.  EQUAÇÕES ALOMÉTRICAS EM PLANTIOS MISTOS VISANDO À RESTAURAÇÃO DA FLORESTA ESTACIONAL SEMIDECIDUAL , 2015 .

[14]  J. Parrotta,et al.  Allometric equations for estimating tree biomass in restored mixed-species Atlantic Forest stands , 2014 .

[15]  Uwe Rascher,et al.  Priority Effects of Time of Arrival of Plant Functional Groups Override Sowing Interval or Density Effects: A Grassland Experiment , 2014, PloS one.

[16]  J. Stape,et al.  Köppen's climate classification map for Brazil , 2013 .

[17]  J. Lima,et al.  Dinâmica de crescimento e distribuição diamétrica de fragmentos de florestas nativa e plantada na Amazônia sul ocidental , 2013 .

[18]  D. S. Ré UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRONÔMICAS CAMPUS DE BOTUCATU EQUAÇÕES VOLUMÉTRICAS E PRODUÇÃO DE MADEIRA EM PLANTIOS MISTOS VISANDO À RESTAURAÇÃO DA FLORESTA ESTACIONAL SEMIDECIDUAL , 2011 .

[19]  J. Parrotta,et al.  Soil dynamics and carbon stocks 10 years after restoration of degraded land using Atlantic Forest tree species , 2011 .

[20]  Y. Malhi,et al.  The allocation of ecosystem net primary productivity in tropical forests , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  Carlos Pedro Boechat Soares,et al.  Estoque e crescimento em volume, biomassa, carbono e dióxido de carbono em Floresta Estacional Semidecidual , 2011 .

[22]  Nogueira Júnior,et al.  Estoque de carbono na fitomassa e mudanças nos atributos do solo em diferentes modelos de restauração da Mata Atlântica , 2010 .

[23]  C. Catterall,et al.  Carbon stocks in above-ground biomass of monoculture plantations, mixed species plantations and environmental restoration plantings in north-east Australia , 2010 .

[24]  I. A. Bognola,et al.  Influência de propriedades físico-hídricas do solo no crescimento de Pinus taeda , 2010 .

[25]  J. Stape,et al.  Can intensive management accelerate the restoration of Brazil's Atlantic forests? , 2010 .

[26]  Carlos Pedro Boechat Soares,et al.  Quantificação de biomassa e estimativa de estoque de carbono em uma capoeira da Zona da Mata Mineira , 2010 .

[27]  Christian Messier,et al.  The role of plantations in managing the world's forests in the Anthropocene , 2010 .

[28]  K. Holl,et al.  Agro‐Successional Restoration as a Strategy to Facilitate Tropical Forest Recovery , 2009 .

[29]  M. Keller,et al.  Estimation of biomass and carbon stocks: the case of the Atlantic Forest , 2008 .

[30]  J. Ometto,et al.  Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years , 2008 .

[31]  P. Erskine,et al.  Restoration of Degraded Tropical Forest Landscapes , 2005, Science.

[32]  J. Parrotta,et al.  An evaluation of direct seeding for reforestation of degraded lands in central São Paulo State, Brazil , 2001 .

[33]  Nogueira Júnior,et al.  Caracterização de solos degradados pela atividade agrícola e alterações biológicas após reflorestamentos com diferentes associações de espécies da Mata Atlântica , 2001 .

[34]  W. Geyer,et al.  Use of Site Index as a Forestry Management Tool , 1987 .

[35]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[36]  R. R. Rodrigues,et al.  Finding the money for tropical forest restoration , 2012 .

[37]  J. Parrotta,et al.  Understanding relationships between biodiversity, carbon, forests and people: The key to achieving REDD+ objectives. A global assessment report prepared by the Global Forest Expert Panel on Biodiversity,Forest Management, and REDD+. , 2012 .

[38]  V. Engel Princípios silviculturais aplicados à restauração ecológica , 2011 .

[39]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[40]  Peter Taylor,et al.  Growing up: Forestry in Queensland , 1994 .

[41]  Jeffrey Q. Chambers,et al.  TROPICAL FORESTS : AN EVALUATION AND SYNTHESIS OF EXISTING FIELD DATA , 2022 .