Multi-relational learning via hierarchical nonparametric Bayesian collective matrix factorization

Relational learning addresses problems where the data come from multiple sources and are linked together through complex relational networks. Two important goals are pattern discovery (e.g. by (co)-clustering) and predicting unknown values of a relation, given a set of entities and observed relations among entities. In the presence of multiple relations, combining information from different but related relations can lead to better insights and improved prediction. For this purpose, we propose a nonparametric hierarchical Bayesian model that improves on existing collaborative factorization models and frames a large number of relational learning problems. The proposed model naturally incorporates (co)-clustering and prediction analysis in a single unified framework, and allows for the estimation of entire missing row or column vectors. We develop an efficient Gibbs algorithm and a hybrid Gibbs using Newton's method to enable fast computation in high dimensions. We demonstrate the value of our framework on simulated experiments and on two real-world problems: discovering kinship systems and predicting the authors of certain articles based on article–word co-occurrence features.

[1]  David M. Blei,et al.  Relational Topic Models for Document Networks , 2009, AISTATS.

[2]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[3]  Thomas L. Griffiths,et al.  Learning Systems of Concepts with an Infinite Relational Model , 2006, AAAI.

[4]  W. Denham The Detection of Patterns in Alyawarra Nonverbal Behavior , 2014 .

[5]  Volker Tresp,et al.  Relation Prediction in Multi-Relational Domains using Matrix Factorization , 2008 .

[6]  Geoffrey J. Gordon,et al.  A Unified View of Matrix Factorization Models , 2008, ECML/PKDD.

[7]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[8]  Geoffrey J. Gordon,et al.  A Bayesian Matrix Factorization Model for Relational Data , 2010, UAI.

[9]  Ramesh Nallapati,et al.  Joint latent topic models for text and citations , 2008, KDD.

[10]  Inderjit S. Dhillon,et al.  Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..

[11]  D. Dunson,et al.  Bayesian Multivariate Logistic Regression , 2004, Biometrics.

[12]  Philip S. Yu,et al.  Spectral clustering for multi-type relational data , 2006, ICML.

[13]  Thomas L. Griffiths,et al.  Nonparametric Latent Feature Models for Link Prediction , 2009, NIPS.

[14]  Arindam Banerjee,et al.  Bayesian Co-clustering , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[15]  Geoffrey J. Gordon,et al.  Relational learning via collective matrix factorization , 2008, KDD.

[16]  Inderjit S. Dhillon,et al.  Information-theoretic co-clustering , 2003, KDD '03.

[17]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[18]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[19]  Ajit P. Singh,et al.  Efficient Matrix Models for Relational Learning , 2009 .

[20]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[21]  Thomas L. Griffiths,et al.  Learning author-topic models from text corpora , 2010, TOIS.

[22]  J. Hartigan Direct Clustering of a Data Matrix , 1972 .

[23]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[24]  Yee Whye Teh,et al.  The Mondrian Process , 2008, NIPS.

[25]  Philip S. Yu,et al.  A probabilistic framework for relational clustering , 2007, KDD '07.

[26]  Thomas L. Griffiths,et al.  The Author-Topic Model for Authors and Documents , 2004, UAI.