Limitations to the equi-distribution of primes I

In an earlier paper FG] we showed that the expected asymptotic formula (x; q; a) (x)==(q) does not hold uniformly in the range q < x= log N x, for any xed N > 0. There are several reasons to suspect that the expected asymptotic formula might hold, for large values of q, when a is kept xed. However, by a new construction, we show herein that this fails in the same ranges, for a xed and, indeed, for almost all a satisfying 0 < jaj < x= log N x.