Quantitative CARS spectroscopy of the ν1 band of water vapour

[1]  D. Greenhalgh,et al.  Temperature and pressure dependence of the ν1 band of water vapour by high-resolution inverse Raman spectroscopy , 1990 .

[2]  P. Stopford,et al.  A study of CARS nitrogen thermometry at high pressure , 1990 .

[3]  W. Stricker,et al.  The application of CARS for temperature measurements in high pressure combustion systems , 1990 .

[4]  J. Hartmann,et al.  Calculated tabulations of H(2)O line broadening by H(2)O, N(2), O(2), and CO(2) at high temperature. , 1989, Applied optics.

[5]  G. J. Rosasco,et al.  Comparison of rotational relaxation rate laws to characterize the Raman Q-branch spectrum of CO at 295 K , 1989 .

[6]  E. Browell,et al.  Spectroscopy of water vapor in the 720-nm wavelength region - Line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts , 1989 .

[7]  J. Wolfrum,et al.  Determination of temperature and concentration of molecular nitrogen, oxygen and methane with coherent anti-stokes raman scattering , 1988 .

[8]  J. Hartmann,et al.  Collisional broadening of rotation–vibration lines for asymmetric‐top molecules. III. Self‐broadening case; application to H2O , 1987 .

[9]  R. Lucht,et al.  Measurements of the nonresonant third-order susceptibilities of gases using coherent anti-Stokes Raman spectroscopy , 1987 .

[10]  L. E. Harris,et al.  Relative value of the third-order nonresonant susceptibility of water. , 1986, Applied optics.

[11]  D. Greenhalgh,et al.  High-resolution inverse Raman spectroscopy of the ν1 band of water vapor , 1986 .

[12]  R. J. Hall,et al.  A closed form solution for the cars intensity convolution , 1986 .

[13]  R. Farrow,et al.  Calculation of collisionally narrowed coherent anti-Stokes Raman spectroscopy spectra. , 1985, Optics letters.

[14]  S. Barton,et al.  A polynomial energy-gap model for molecular linewidths , 1985 .

[15]  M. Péalat,et al.  Precision of multiplex CARS temperature measurements. , 1985, Applied optics.

[16]  R. J. Hall,et al.  Application of the rotational diffusion model to the CARS spectra of high-temperature, high-pressure water vapour , 1984 .

[17]  A. Eckbreth,et al.  Pressure-induced narrowing of the cars spectrum of N2☆ , 1980 .

[18]  M. Ito,et al.  Effects of hydrogen bonding on the Raman intensities of methanol, ethanol and water , 1978 .

[19]  J. Flaud,et al.  Line positions and intensities in the ? 2 band of H 2 16 O , 1976 .

[20]  Carl M. Penney,et al.  Raman-scattering cross sections for water vapor , 1976 .

[21]  R. Davies Many-body treatment of pressure shifts associated with collisional broadening , 1975 .

[22]  R. Gordon,et al.  Line Shapes in Molecular Spectra , 1968 .

[23]  P. Anderson Pressure Broadening in the Microwave and Infra-Red Regions , 1949 .

[24]  B. Whitaker,et al.  Stereochemical influences in atom–triatomic collisions , 1989 .

[25]  J. Hartmann Calculation of self-broadening coefficients for H2O Raman lines , 1988 .