Towards oscillations-based simulation of social systems: a neurodynamic approach

This multidisciplinary work presents synopsis of theories in the search for common field-like fundamental principles of self-organisation and communication existing on quantum, cellular, and even social levels. Based on these fundamental principles, we formulate conceptually novel social neuroscience paradigm (OSIMAS), which envisages social systems emerging from the coherent neurodynamical processes taking place in the individual mind-fields. In this way, societies are understood as global processes emerging from the superposition of the conscious and subconscious mind-fields of individual members of society. For the experimental validation of the biologically inspired OSIMAS paradigm, we have designed a framework of EEG-based experiments. Initial baseline individual tests of spectral cross-correlations of EEG-recorded brainwave patterns for some mental states have been provided in this paper. Preliminary experimental results do not refute the main OSIMAS postulates. This paper also provides some insights for the construction of OSIMAS-based simulation models.

[1]  Leigh Tesfatsion,et al.  Handbook of Computational Economics, Volume 2: Agent-Based Computational Economics (Handbook of Computational Economics) , 2006 .

[2]  Dongyun Yi,et al.  Mining social networks using wave propagation , 2013, Comput. Math. Organ. Theory.

[3]  D. Plikynas,et al.  EEG Prognostication Using Coupled Oscillators Energy Exchange Model and Narrow Spectral Bands Superposition Approach , 2014 .

[4]  D. Orme-Johnson,et al.  Field model of consciousness: EEG coherence changes as indicators of field effects. , 1989, The International journal of neuroscience.

[5]  Damon Centola,et al.  The Spread of Behavior in an Online Social Network Experiment , 2010, Science.

[6]  S. S. Reisman,et al.  Measurement of the electroencephalogram (EEG) coherence in group meditation , 1996, Proceedings of the IEEE 22nd Annual Northeast Bioengineering Conference.

[7]  A. Pikovsky,et al.  Synchronization: Theory and Application , 2003 .

[8]  Douglas J. Cremer,et al.  Basic Writings , 2014 .

[9]  Alexis Drogoul,et al.  Combining amorphous computing and reactive agent-based systems: a paradigm for pervasive intelligence? , 2002, AAMAS '02.

[10]  Ronald H. Stevens,et al.  Modeling the neurodynamic complexity of submarine navigation teams , 2012, Computational and Mathematical Organization Theory.

[11]  T. Gliga,et al.  Handbook of Developmental Social Neuroscience , 2010, Neuropsychological rehabilitation.

[12]  Wei-Min Shen,et al.  Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots , 2002, IEEE Trans. Robotics Autom..

[13]  Giuseppe Vizzari,et al.  Context dependent management of field diffusion: an experimental framework , 2003, WOA.

[14]  H. Maturana,et al.  Autopoiesis and Cognition , 1980 .

[15]  Franco Zambonelli,et al.  Field-based coordination for pervasive multiagent systems , 2010, Springer series on agent technology.

[16]  Frederick Travis,et al.  CROSS-SECTIONAL AND LONGITUDINAL STUDY OF EFFECTS OF TRANSCENDENTAL MEDITATION PRACTICE ON INTERHEMISPHERIC FRONTAL ASYMMETRY AND FRONTAL COHERENCE , 2006, The International journal of neuroscience.

[17]  J Grinberg-Zylberbaum,et al.  Please Scroll down for Article International Journal of Neuroscience Patterns of Interhemispheric Correlation during Human Communication , 2022 .

[18]  Holger Keibel,et al.  Correlations between brain electrical activities of two spatially separated human subjects , 2003, Neuroscience Letters.

[19]  Franco Zambonelli,et al.  Urban Traffic Control with Co-Fields , 2006, E4MAS.

[20]  J. Decety,et al.  Annals of the New York Academy of Sciences Social Neuroscience: Challenges and Opportunities in the Study of Complex Behavior , 2022 .

[21]  Sarunas Raudys Survival of Intelligent Agents in Changing Environments , 2004, ICAISC.

[22]  Roger Penrose,et al.  Reply to seven commentaries on “Consciousness in the universe: Review of the ‘Orch OR’ theory” , 2014 .

[23]  R. Hari,et al.  Emotions promote social interaction by synchronizing brain activity across individuals , 2012, Proceedings of the National Academy of Sciences.

[24]  D. Radin,et al.  Event-related electroencephalographic correlations between isolated human subjects. , 2004, Journal of alternative and complementary medicine.

[25]  Herbert Gintis,et al.  Handbook of Computational Economics: Agent-Based Computational Economics (Handbook of Computational Economics S.) by K. L. Judd, L. Tesfatsion, M. D. Intriligator and Kenneth J. Arrow (eds.) , 2007, J. Artif. Soc. Soc. Simul..

[26]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[27]  Itamar Kahn,et al.  Cognition: An Overview of Neuroimaging Techniques , 2009 .

[28]  A. Lutz,et al.  Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Alexandra Olaya-Castro,et al.  Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature , 2013, Nature Communications.

[30]  Todd Richards,et al.  Electroencephalographic evidence of correlated event-related signals between the brains of spatially and sensory isolated human subjects. , 2004, Journal of alternative and complementary medicine.

[31]  Yu Zhang,et al.  How behaviors spread in dynamic social networks , 2011, Computational and Mathematical Organization Theory.

[32]  C. A. Grimbergen,et al.  HIGH QUALITY RECORDING OF BIOELECTRIC EVENTS . I : INTERFERENCE REDUCTION , THEORY AND PRACTICE , 2009 .

[33]  E. Harth,et al.  Electric Fields of the Brain: The Neurophysics of Eeg , 2005 .

[34]  Stefania Bandini,et al.  TOWARD A PLATFORM FOR MULTI-LAYERED MULTI-AGENT SITUATED SYSTEM (MMASS)-BASED SIMULATIONS: FOCUSING ON FIELD DIFFUSION , 2006, Appl. Artif. Intell..

[35]  Stefan Poslad,et al.  Ubiquitous Computing: Smart Devices, Environments and Interactions , 2009 .

[36]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[37]  K. Pribram Brain and Perception: Holonomy and Structure in Figural Processing , 1991 .

[38]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[39]  B. Libet A TESTABLE FIELD THEORY OF MINDñBRAIN INTERACTION , 2014 .

[40]  Karl H. Pribram,et al.  Survey paper: Quantum holography: Is it relevant to brain function? , 1999 .

[41]  Todd Richards,et al.  Evidence for correlations between distant intentionality and brain function in recipients: a functional magnetic resonance imaging analysis. , 2005, Journal of alternative and complementary medicine.

[42]  Robert M. Oates,et al.  A Field-Theoretic View of Consciousness: Reply to Critics , 2009 .

[43]  Mark Reimers,et al.  Local or distributed activation? The view from biology , 2011, Connect. Sci..

[44]  Danko D. Georgiev,et al.  Dissipationless Waves for Information Transfer in Neurobiology-Some Implications , 2006, Informatica.

[45]  R. Hari,et al.  Brain basis of human social interaction: from concepts to brain imaging. , 2009, Physiological reviews.

[46]  Algirdas Laukaitis,et al.  Social systems in terms of coherent individual neurodynamics: conceptual premises, experimental and simulation scope , 2014, Int. J. Gen. Syst..

[47]  Aistis Raudys,et al.  Journal of Experimental & Theoretical Artificial Intelligence , 2014 .

[48]  Shu-Chen Li,et al.  Brains swinging in concert: cortical phase synchronization while playing guitar , 2009, BMC Neuroscience.

[49]  Fred H. Thaheld,et al.  An interdisciplinary approach to certain fundamental issues in the fields of physics and biology: towards a unified theory. , 2005, Bio Systems.

[50]  R. Penrose,et al.  Consciousness in the universe: a review of the 'Orch OR' theory. , 2014, Physics of life reviews.

[51]  J. Grinberg-Zylberbaum,et al.  The Einstein-Podolsky-Rosen Paradox in the Brain: The Transferred Potential , 1994 .

[52]  Olivier David,et al.  Dynamic causal models and autopoietic systems. , 2007, Biological research.

[53]  Darius Plikynas,et al.  A virtual field-based conceptual framework for the simulation of complex social systems , 2010, J. Syst. Sci. Complex..

[54]  Aistis Raudys,et al.  Modelling of Excitation Propagation for Social Interactions , 2014, HCI.

[55]  Thomas W. Valente Network models of the diffusion of innovations , 1996, Comput. Math. Organ. Theory.

[56]  H. Maturana,et al.  Autopoiesis and Cognition : The Realization of the Living (Boston Studies in the Philosophy of Scie , 1980 .

[57]  Klaus-Robert Müller,et al.  Machine learning for real-time single-trial EEG-analysis: From brain–computer interfacing to mental state monitoring , 2008, Journal of Neuroscience Methods.

[58]  D. Plikynas,et al.  Interdisciplinary Principles of Field-Like Coordination in the Case of Self-Organized Social Systems1 , 2012 .

[59]  Marco Mamei,et al.  Engineering Amorphous Computing Systems , 2004 .

[60]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[61]  Blake Hannaford,et al.  Time-domain passivity control of haptic interfaces , 2001, IEEE Trans. Robotics Autom..

[62]  Franco Zambonelli,et al.  Methodologies and software engineering for agent systems : the agent-oriented software engineering handbook , 2004 .

[63]  D. Orme-Johnson,et al.  EEG phase coherence, pure consciousness, creativity, and TM--Sidhi experiences. , 1981, The International journal of neuroscience.

[64]  Giuseppe Vitiello,et al.  Quantum noise induced entanglement and chaos in the dissipative quantum model of brain , 2004, quant-ph/0406161.

[65]  Ervin Laszlo,et al.  The Systems View of the World: A Holistic Vision for Our Time , 1996 .