Weyl-titchmarsh M -function Asymptotics for Matrix-valued Schr¨odinger Operators

We explicitly determine the high‐energy asymptotics for Weyl–Titchmarsh matrices corresponding to matrix‐valued Schrödinger operators associated with general self‐adjoint m × m matrix potentials Q∈Lloc1((x0,∞))m×m , where m ∈ N. More precisely, assume that for some N ∈ N and x0∈R, Q(N−1)∈L1([x0,c))m×m for all c>x0, and that x⩾ x0 is a right Lebesgue point of Q(N–1). In addition, denote by Im the m×m identity matrix and by Cɛ the open sector in thecomplex plane with vertex at zero, symmetry axis along the positive imaginary axis, and opening angle ɛ, with 0 < ε < ½π. Then we prove the following asymptotic expansion for any point M+(z,x) of the unique limit point or a point of the limit disk associated with the differential expression Imd2dx2+Q(x) in L2((x0,∞))m and a Dirichlet boundary condition at x=x0: M+(z,x)=|z|→∞,z∈CεiImz1/2+∑k=1Nm+,k(x)z−k/2+o(|z|−N/2),where N∈N. The expansion is uniform with respect to arg(z) for |z| → ∞ in Cɛ and uniform in x as long as x varies in compact subsets of R intersected with the right Lebesgue set of Q(N–1). Moreover, the m × m expansion coefficients m+,k(x) can be computed recursively.

[1]  N. Kalton,et al.  Some Applications of Operator-Valued Herglotz Functions , 1998, math/9802103.

[2]  Alexei Rybkin,et al.  On the Trace Approach to the Inverse Scattering Problem in Dimension One , 2001, SIAM J. Math. Anal..

[3]  R. Carlson Eigenvalue Estimates and Trace Formulas for the Matrix Hill's Equation , 2000 .

[4]  R. Carlson Compactness of Floquet isospectral sets for the matrix Hill's equation , 2000 .

[5]  Barry Simon,et al.  A new approach to inverse spectral theory, I. Fundamental formalism , 1999, math/9906118.

[6]  R. Carlson Large eigenvalues and trace formulas for matrix Sturm-Liouville problems , 1999 .

[7]  H. Holden,et al.  Borg-Type Theorems for Matrix-Valued Schrödinger Operators , 1999, math/9905143.

[8]  F. Gesztesy,et al.  The Ξ operator and its relation to Krein's spectral shift function , 1999, math/9904050.

[9]  F. Gesztesy,et al.  Some Applications of the Spectral Shift Operator , 1999, math/9903186.

[10]  H. Chern On the Construction of Isospectral Vectorial Sturm-Liouville Differential Equations , 1999, math/9902041.

[11]  H. Chern On The Eigenvalues of Some Vectorial Sturm-Liouville Eigenvalue Problems , 1999, math/9902019.

[12]  F. Gesztesy,et al.  The Spectral Shift Operator , 1999, math/9901112.

[13]  Barry Simon,et al.  A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure , 1998, math/9809182.

[14]  M. A. Kaashoek,et al.  Sturm-Liouville systems with rational Weyl functions: Explicit formulas and applications , 1998 .

[15]  D. Alpay,et al.  Inverse problem for Sturm-Liouville operators with rational reflection coefficient , 1998 .

[16]  K. Makarov Tsekanovskii: An Addendum to Krein’s Formula , 1998 .

[17]  F. Gesztesy,et al.  On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.

[18]  F. Gesztesy,et al.  An Addendum to Krein's Formula , 1997, funct-an/9711003.

[19]  B. Konopelchenko,et al.  On equation of geodesic deviation and its solutions , 1997, solv-int/9705003.

[20]  H. Chern,et al.  On the n-dimensional Ambarzumyan's theorem , 1997 .

[21]  H. Holden,et al.  ON TRACE FORMULAS FOR SCHRODINGER-TYPE OPERATORS , 1997 .

[22]  B. Simon,et al.  The xi function , 1996 .

[23]  C. Remling Geometric Characterization of Singular Self-Adjoint Boundary Conditions for Hamiltonian Systems , 1996 .

[24]  B. Simon,et al.  HIGHER ORDER TRACE RELATIONS FOR SCHRÖDINGER OPERATORS , 1995 .

[25]  B. Després The Borg theorem for the vectorial Hill's equation , 1995 .

[26]  V. Papanicolaou Trace formulas and the behavior of large eigenvalues , 1995 .

[27]  I. Gohberg,et al.  Matrix and Operator Valued Functions: The Vladimir Petrovich Potapov Memorial Volume , 1994 .

[28]  L. Sakhnovich Inverse problems for equations systems , 1994 .

[29]  Albert Schneider,et al.  On the Titchmarsh‐Weyl Coefficients for Singular S‐Hermitian Systems II , 1993 .

[30]  B. Levitan,et al.  On the Asymptotic Behavior of the Weyl-Titchmarsh m-FUNCTION , 1991 .

[31]  K. R. Prasad,et al.  Upper and lower bounds for the solution of the general matrix Riccati differential equation , 1990 .

[32]  C. Bennewits,et al.  Spectral asymptotics for Sturm-Liouville equations , 1989 .

[33]  Allan M. Krall,et al.  M (λ) theory for singular Hamiltonian systems with two singular points , 1989 .

[34]  J. K. Shaw,et al.  Series representation and asymptotics for Titchmarsh-Weyl $m$-functions , 1989, Differential and Integral Equations.

[35]  B. Simon,et al.  Stochastic Schrödinger operators and Jacobi matrices on the strip , 1988 .

[36]  V. Marchenko Nonlinear Equations and Operator Algebras , 1987 .

[37]  Russell Johnson m-functions and Floquet exponents for linear differential systems , 1987 .

[38]  J. Weidmann,et al.  Spectral Theory of Ordinary Differential Operators , 1987 .

[39]  B. Harris An exact method for the calculation of certain Titchmarsh-Weyl m-functions , 1987, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[40]  B. Harris The asymptotic form of the Titchmarsh–Weyl m-function associated with a second order differential equation with locally integrable coefficient , 1986, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[41]  M. Kwong,et al.  Asymptotics of the Titchmarsh-Weyl m-coefficient for integrable potentials , 1986, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[42]  B. Dubrovin,et al.  Matrix finite-zone operators , 1985 .

[43]  J. K. Shaw,et al.  On Boundary Value Problems for Hamiltonian Systems with Two Singular Points , 1984 .

[44]  J. K. Shaw,et al.  Hamiltonian systems of limit point or limit circle type with both endpoints singular , 1983 .

[45]  J. K. Shaw,et al.  The Asymptotic Form of the Titchmarsh‐Weyl Coefficient for Dirac Systems , 1983 .

[46]  B. Harris On the Titchmarsh–Weyl m -function , 1983, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[47]  M. Kreĭn,et al.  On tests for stable boundedness of solutions of periodic canonical systems , 1983 .

[48]  L. Alonso,et al.  Trace identities in the inverse scattering transform method associated with matrix Schrödinger operators , 1982 .

[49]  J. K. Shaw,et al.  ON THE SPECTRUM OF A SINGULAR HAMILTONIAN SYSTEM , 1982 .

[50]  J. K. Shaw,et al.  On Titchmarsh-Weyl M(λ)-functions for linear Hamiltonian systems , 1981 .

[51]  F. Guil,et al.  Infinite-dimensional Hamiltonian systems associated with matrix Schrödinger operators , 1981 .

[52]  F. Atkinson On the location of the Weyl circles , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[53]  W. N. Everitt,et al.  On the asymptotic form of the Titchmarsh-Weyl m-coefficient† , 1978 .

[54]  Y. Manin Matrix solitons and bundles over curves with singularities , 1978 .

[55]  M. Coz The Riemann solution in the one-dimensional inverse problem , 1977 .

[56]  I. Gel'fand,et al.  The resolvent and Hamiltonian systems , 1977 .

[57]  Boris Dubrovin,et al.  Completely integrable Hamiltonian systems associated with matrix operators and Abelian varieties , 1977 .

[58]  V. I. Kogan,et al.  1.—On Square-integrable Solutions of Symmetric Systems of Differential Equations of Arbitrary Order. , 1976, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[59]  R. Carey A unitary invariant for pairs of self-adjoint operators. , 1976 .

[60]  E. Coddington,et al.  Spectral theory of ordinary differential operators , 1975 .

[61]  M. Wadati,et al.  On the Extension of Inverse Scattering Method , 1974 .

[62]  W. N. Everitt On a Property of the M -Coefficient of a Secondorder Linear Differential Equation , 1972 .

[63]  Yu. L. Shmul'yan On operator R-functions , 1971 .

[64]  Nam Parshad Bhatia,et al.  Lectures on ordinary differential equations , 1964 .

[65]  F. V. Atkinson,et al.  Discrete and Continuous Boundary Problems , 1964 .

[66]  V. A. Marchenko,et al.  The Inverse Problem of Scattering Theory , 1963 .

[67]  N. Aronszajn,et al.  On exponential representations of analytic functions in the upper half-plane with positive imaginary part , 1956 .

[68]  Göran Borg Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe , 1946 .

[69]  E. C. Titchmarsh Introduction to the Theory of Fourier Integrals , 1938 .