Carrier mobility model for simulation of SiC-based electronic devices

Simple analytical approximations are proposed for describing the temperature and concentration dependences of low-field mobility in the main polytypes of silicon carbide (SiC): 6H, 4H and 3C in wide ranges of temperature and concentration. The obtained results can be directly used for the computer simulation of SiC-based devices. Different approaches to the analytical approximation of SiC parameters are critically correlated and analysed.

[1]  J. Wasscher,et al.  On the electronic conduction of α-SiC crystals between 300 and 1500°K , 1963 .

[2]  R. E. Thomas,et al.  Carrier mobilities in silicon empirically related to doping and field , 1967 .

[3]  D. L. Barrett,et al.  Electron mobility measurements in SiC polytypes. , 1967 .

[4]  J. Hauser,et al.  Electron and hole mobilities in silicon as a function of concentration and temperature , 1982, IEEE Transactions on Electron Devices.

[5]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[6]  M. Yamanaka,et al.  Temperature dependence of electrical properties of n‐ and p‐type 3C‐SiC , 1987 .

[7]  Shunjiro Shinohara Analytical Liner Current Distribution and Magnetic Field near Port Section with Circular and Elliptical Shapes : Nuclear Science, Plasmas and Electric Discharges , 1988 .

[8]  K. Endo,et al.  Growth of High-Mobility 3C-SiC Epilayers by Chemical Vapor Deposition , 1988 .

[9]  W. J. Choyke,et al.  Hall effect and infrared absorption measurements on nitrogen donors in 6H‐silicon carbide , 1992 .

[10]  W. Suttrop,et al.  Chemical vapor deposition and characterization of undoped and nitrogen‐doped single crystalline 6H‐SiC , 1992 .

[11]  H. Mitlehner,et al.  SiC devices: physics and numerical simulation , 1994 .

[12]  J. Palmour,et al.  Conductivity Anisotropy in Epitaxial 6H and 4H Sic , 1994 .

[13]  J. Lin,et al.  Effects of electron mass anisotropy on Hall factors in 6H‐SiC , 1996 .

[14]  M. Sergent,et al.  New series of niobium oxychlorides, M2RENb6Cl15O3 (M = monovalent cation, RE = rare earth) and M2UNb6Cl15O3. The crystal structure of Cs2UNb6Cl15O3 , 1997 .

[15]  K. Itoh,et al.  Calculation of the Anisotropy of the Hall Mobility in n-Type 4H- and 6H-SiC , 1997 .

[16]  M. Melloch,et al.  Design considerations and experimental analysis of high-voltage SiC Schottky barrier rectifiers , 1998 .

[17]  Jian H. Zhao,et al.  Monte Carlo study of electron transport in SiC , 1998 .

[18]  B. Williams,et al.  A simulation study of high voltage 4H-SiC IGBTs , 1998 .

[19]  W. J. Choyke,et al.  Measurement of the Hall scattering factor in 4H and 6H SiC epilayers from 40 to 290 K and in magnetic fields up to 9 T , 1998 .

[20]  P. Mawby,et al.  The numerical modelling of silicon carbide high power semiconductor devices , 1999 .

[21]  J. Palmour,et al.  Progress in SiC : from material growth to commercial device development , 1999 .

[22]  Jian H. Zhao,et al.  Demonstration of the first 4H-SiC avalanche photodiodes , 2000 .

[23]  R. Gutmann,et al.  SiC and GaN bipolar power devices , 2000 .

[24]  M. E. Levinshtein,et al.  Transient characteristics of a 1.8 kV, 3.8 A 4H-SiC bipolar junction transistor , 2001 .

[25]  A. G. Tandoev,et al.  Temperature dependence of turn-on processes in 4H–SiC thyristors , 2001 .

[26]  A. Agarwal,et al.  Turn-off performance of 2.6 kV 4H-SiC asymmetrical GTO thyristor , 2001 .

[27]  M. Roschke,et al.  Electron mobility models for 4H, 6H, and 3C SiC [MESFETs] , 2001 .

[28]  T. T. Mnatsakanov,et al.  Semiempirical model of carrier mobility in silicon carbide for analyzing its dependence on temperature and doping level , 2001 .

[29]  Jian H. Zhao,et al.  Demonstration of 140 A, 800 V 4H-SiC pin/Schottky barrier diodes with multi-step junction termination extension structures , 2001 .