Ultrasonic image analysis for liver diagnosis

The authors propose a new ultrasonic image analysis system that can be utilized as an effective tool in classifying liver states as normal, hepatitis, or liver cirrhosis. In this system, the authors first define suitable settings for the ultrasonic device, then remove the inhomogeneous structures from the area of interest in the image, and then, by using the forward sequential search method, look for the useful texture parameters from the co-occurrence matrix, the statistical feature matrix, the texture spectrum, and the fractal dimension descriptors. Finally, the selected parameters are fed into a probabilistic neural network for the classification of liver disease. Experimental results are presented that show the classification rate with and without the inclusion of the inhomogeneous structures.

[1]  Meyer Sg,et al.  Diarrhea in U.S. Army personnel in Italy. , 1947 .

[2]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[3]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[4]  N. Sanford,et al.  Is ultrasonography useful in the assessment of diffuse parenchymal liver disease? , 1985, Gastroenterology.

[5]  W. A. Verhoef,et al.  In vitro estimation of acoustic parameters of the liver and correlations with histology. , 1986, Ultrasound in medicine & biology.

[6]  L. Ferrari,et al.  In vivo acoustic attenuation in liver: correlations with blood tests and histology. , 1988, Ultrasound in medicine & biology.

[7]  Dong-Chen He,et al.  Texture discrimination based on an optimal utilization of texture features , 1988, Pattern Recognit..

[8]  S. Zucker,et al.  Evaluating the fractal dimension of surfaces , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[10]  James M. Keller,et al.  Texture description and segmentation through fractal geometry , 1989, Comput. Vis. Graph. Image Process..

[11]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[12]  Dong-Chen He,et al.  Texture Unit, Texture Spectrum, And Texture Analysis , 1990 .

[13]  Andrew S. Noetzel,et al.  Image processing and pattern recognition in ultrasonograms by backpropagation , 1990, Neural Networks.

[14]  U. Holzer‐Petsche,et al.  Effect of neuropeptide Y on jejunal water and ion transport in humans. , 1991, Gastroenterology.

[15]  K. Suzuki,et al.  Ultrasonic tissue characterization of chronic liver disease using cepstral analysis. , 1991, Gastroenterology.

[16]  Yung-Chang Chen,et al.  Texture features for classification of ultrasonic liver images , 1992, IEEE Trans. Medical Imaging.

[17]  R. Kumaresan,et al.  Fractal dimension in the analysis of medical images , 1992, IEEE Engineering in Medicine and Biology Magazine.

[18]  Yung-Chang Chen,et al.  Liver tissues classification by artificial neural networks , 1992, Pattern Recognit. Lett..

[19]  Yung-Chang Chen,et al.  Statistical feature matrix for texture analysis , 1992, CVGIP Graph. Model. Image Process..

[20]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  T Lu,et al.  Optical wavelet matched filters for shift-invariant pattern recognition. , 1993, Optics letters.

[22]  K. Suzuki,et al.  Evaluation of structural change in diffuse liver disease with frequency domain analysis of ultrasound , 1993, Hepatology.

[23]  R. Suzuki,et al.  Abdominal wall fat index, estimated by ultrasonography, for assessment of the ratio of visceral fat to subcutaneous fat in the abdomen. , 1993, The American journal of medicine.