High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator

Abstract High throughput femtosecond laser processing is demonstrated by creating multiple beams using a spatial light modulator (SLM). The diffractive multi-beam patterns are modulated in real time by computer generated holograms (CGHs), which can be calculated by appropriate algorithms. An interactive LabVIEW program is adopted to generate the relevant CGHs. Optical efficiency at this stage is shown to be ∼50% into first order beams and real time processing has been carried out at 50 Hz refresh rate. Results obtained demonstrate high precision surface micro-structuring on silicon and Ti6Al4V with throughput gain >1 order of magnitude.

[1]  Eric Audouard,et al.  Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps , 2005 .

[2]  A. Luft,et al.  A study of thermal and mechanical effects on materials induced by pulsed laser drilling , 1996 .

[3]  Jonathan Leach,et al.  An optical trapped microhand for manipulating micron-sized objects. , 2006, Optics express.

[4]  Wolfgang Osten,et al.  Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers. , 2006, Applied optics.

[5]  Hayasaki Yoshio,et al.  Holographic femtosecond laser processing with multiplexed phase Fresnel lenses , 2006 .

[6]  Gerard Mourou,et al.  Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs , 1994 .

[7]  Johannes Courtial,et al.  Interactive approach to optical tweezers control. , 2006, Applied optics.

[8]  Nobuo Nishida,et al.  Variable holographic femtosecond laser processing by use of a spatial light modulator , 2005 .

[9]  Gerard M. O'Connor,et al.  Ablation thresholds in ultrafast laser micromachining of common metals in air , 2003, SPIE OPTO-Ireland.

[10]  Yoshio Hayasaki,et al.  Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator. , 2007, Applied optics.

[11]  P. Foxa,et al.  Femtosecond laser micro-structuring of aluminium under helium , 2004 .

[12]  Johannes Courtial,et al.  3D manipulation of particles into crystal structures using holographic optical tweezers. , 2004, Optics express.

[13]  G. Mourou,et al.  Laser ablation and micromachining with ultrashort laser pulses , 1997 .

[14]  A. Tünnermann,et al.  Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .

[15]  Shuhei Tanaka,et al.  Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements. , 2004, Optics express.

[16]  P. Fox,et al.  Femtosecond laser micro-structuring of aluminium under helium , 2004 .

[17]  H. Tiziani,et al.  Multi-functional optical tweezers using computer-generated holograms , 2000 .

[18]  Joachim P Spatz,et al.  Symmetry dependence of holograms for optical trapping. , 2005, Optics letters.

[19]  Nobuo Nishida,et al.  Holographic femtosecond laser processing with multiplexed phase Fresnel lenses. , 2006, Optics letters.

[20]  Johannes Courtial,et al.  Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping. , 2004, Optics express.

[21]  B. Bhushan Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices , 2007 .