Transformations of Border Strips and Schur Function Determinants
暂无分享,去创建一个
[1] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[2] R. Stanley,et al. Enumerative Combinatorics: Index , 1999 .
[3] Marcel Paul Schützenberger,et al. La correspondance de Robinson , 1977 .
[4] I. G. MacDonald. Schur functions: Theme and variations. , 1992 .
[5] John R. Stembridge,et al. Nonintersecting Paths, Pfaffians, and Plane Partitions , 1990 .
[6] B. Sagan. The Symmetric Group , 2001 .
[7] Alain Lascoux,et al. Ribbon Schur Functions , 1988, Eur. J. Comb..
[8] Ö. Eğecioğlu,et al. A combinatorial proof of the Giambelli identity for Schur functions , 1988 .
[9] I. Gessel,et al. Binomial Determinants, Paths, and Hook Length Formulae , 1985 .
[10] Lattice path proof of the ribbon determinant formula for Schur functions , 1991 .
[11] Christian Krattenthaler,et al. Lattice Path Proofs for Determinantal Formulas for Symplectic and Orthogonal Characters , 1997, J. Comb. Theory, Ser. A.
[12] Ian P. Goulden,et al. Planar decompositions of tableaux and Schur function determinants , 1995, Eur. J. Comb..
[13] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[14] A. Zelevinsky,et al. A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence , 1981 .
[15] Curtis Greene,et al. A New Tableau Representation for Supersymmetric Schur Functions , 1994 .
[16] William Y. C. Chen,et al. The skew Schubert polynomials , 2004, Eur. J. Comb..