Convergence of adaptive FEM for a class of degenerate convex minimization problems

A class of degenerate convex minimization problems allows for some adaptive finite-element method (AFEM) to compute strongly converging stress approximations. The algorithm AFEM consists of successive loops of the form SOLVE → ESTIMATE -> MARK → REFINE and employs the bulk criterion. The convergence in L P' (Ω; R m×n ) relies on new sharp strict convexity estimates of degenerate convex minimization problems with J(v):= ∫ Ω W(Dν)dx-∫ Ω fνdx for ν ∈ V:= W 0 1,p (Ω; R m ). The class of minimization problems includes strong convex problems and allows applications in an optimal design task, Hencky elastoplasticity or relaxation of two-well problems allowing for microstructures.

[1]  Carsten Carstensen,et al.  Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis , 2004 .

[2]  Rodolfo Rodríguez A Posteriori Error Analysis in the Finite Element Method , 1994 .

[3]  Ricardo H. Nochetto,et al.  Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..

[4]  Carsten Carstensen,et al.  Numerical Analysis of Compatible Phase Transitions in Elastic Solids , 2000, SIAM J. Numer. Anal..

[5]  Carsten Carstensen,et al.  Averaging techniques for reliable and efficient a posteriori finite element error control : analysis and applications. , 2005 .

[6]  王东东,et al.  Computer Methods in Applied Mechanics and Engineering , 2004 .

[7]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[8]  R. Kohn,et al.  Numerical study of a relaxed variational problem from optimal design , 1986 .

[9]  Florent Cadoux Optimisation et analyse convexe pour la dynamique non-régulière , 2009 .

[10]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[11]  E. Zeidler Nonlinear Functional Analysis and its Applications: IV: Applications to Mathematical Physics , 1997 .

[12]  Carsten Carstensen,et al.  Adaptive Finite Element Methods for Microstructures? Numerical Experiments for a 2-Well Benchmark , 2003, Computing.

[13]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[14]  Carsten Carstensen,et al.  Numerical solution of the scalar double-well problem allowing microstructure , 1997, Math. Comput..

[15]  Carsten Carstensen,et al.  A convergent adaptive finite element method for an optimal design problem , 2007, Numerische Mathematik.

[16]  Carsten Carstensen,et al.  An Adaptive Mesh-Refining Algorithm Allowing for an H1 Stable L2 Projection onto Courant Finite Element Spaces , 2004 .

[17]  C. Carstensen Clément Interpolation and Its Role in Adaptive Finite Element Error Control , 2006 .

[18]  R. Rodríguez Some remarks on Zienkiewicz‐Zhu estimator , 1994 .

[19]  Andreas Veeser,et al.  Convergent adaptive finite elements for the nonlinear Laplacian , 2002, Numerische Mathematik.

[20]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[21]  D. Knees Global stress regularity for convex and some nonconvex variational problems on Lipschitz-domains , 2005 .

[22]  Carsten Carstensen,et al.  Local Stress Regularity in Scalar Nonconvex Variational Problems , 2002, SIAM J. Math. Anal..

[23]  R. Temam,et al.  Problèmes mathématiques en plasticité , 1983 .

[24]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.