Intrinsic relationship between crystallization mechanism of metallic glass powder and microstructure of bulk alloys fabricated by powder consolidation and crystallization of amorphous phase

[1]  H. E. Kissinger Variation of Peak Temperature With Heating Rate in Differential Thermal Analysis , 1956 .

[2]  B. Cullity,et al.  Elements of X-ray diffraction , 1957 .

[3]  T. Amano,et al.  Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition , 1973 .

[4]  T. Asano,et al.  High‐field superconducting properties of the composite‐processed Nb3Sn with Nb‐Ti alloy cores , 1981 .

[5]  J. Málek The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses☆ , 1995 .

[6]  D. Bacon,et al.  Atomic modelling of strengthening mechanisms due to voids and copper precipitates in α-iron , 2003 .

[7]  Yu‐Chan Kim,et al.  A development of Ti-based bulk metallic glass , 2004 .

[8]  Jianlin Li,et al.  On the crystallization kinetics of Zr60Al15Ni25 amorphous alloy , 2004 .

[9]  A. Conde,et al.  Non-isothermal approach to isokinetic crystallization processes : Application to the nanocrystallization of HITPERM alloys , 2005 .

[10]  C. Leyens,et al.  Titanium and titanium alloys : fundamentals and applications , 2005 .

[11]  D. Kim,et al.  Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses , 2005 .

[12]  Wolfgang Löser,et al.  High-strength Ti-base ultrafine eutectic with enhanced ductility , 2005 .

[13]  A. L. Greer,et al.  Enhancement of room-temperature plasticity in a bulk metallic glass by finely dispersed porosity , 2005 .

[14]  A. Inoue,et al.  Viscosity measurements of Zr55Cu30Al10Ni5 supercooled liquid alloys by using penetration viscometer under high-speed heating conditions , 2006 .

[15]  J. Shen,et al.  A new Ti–Zr–Hf–Cu–Ni–Si–Sn bulk amorphous alloy with high glass-forming ability , 2007 .

[16]  C. Yang,et al.  Oxygen-induced amorphization of metallic titanium by ball milling , 2007 .

[17]  Lai‐Chang Zhang,et al.  Ductile ultrafine-grained Ti-based alloys with high yield strength , 2007 .

[18]  K. Tachikawa Overview of Nb 3Sn and V 3Ga conductor development in Japan , 2008 .

[19]  C. Yang,et al.  Effect of WC content on glass formation, thermal stability, and phase evolution of a TiNbCuNiAl alloy synthesized by mechanical alloying , 2008 .

[20]  C. Yang,et al.  Ultrafine-grained Ti 66 Nb 13 Cu 8 Ni 6.8 Al 6.2 composites fabricated by spark plasma sintering and crystallization of amorphous phase , 2009 .

[21]  S. Qu,et al.  Microstructure and Mechanical Properties of SPSed (Spark Plasma Sintered) Ti66Nb13Cu8Ni6:8Al6:2 Bulk Alloys with and without WC Addition , 2009 .

[22]  J. Buha Characterisation of precipitates in an aged Mg-Zn-Ti alloy , 2009 .

[23]  S. Qu,et al.  Nucleation and growth mechanism of crystalline phase for fabrication of ultrafine-grained Ti66Nb13Cu8Ni6.8Al6.2 composites by spark plasma sintering and crystallization of amorphous phase , 2010 .

[24]  A. Takeuchi,et al.  Recent development and application products of bulk glassy alloys , 2011 .

[25]  Q. Zhai,et al.  Non-isothermal crystallization kinetics of FeZrB amorphous alloy , 2011 .

[26]  S. Qu,et al.  Ductile fine-grained Ti–O-based composites with ultrahigh compressive specific strength fabricated by spark plasma sintering , 2011 .

[27]  C. Yang,et al.  Microstructure and mechanical properties of nanocrystalline WC-particle-reinforced Ti-based composites with nano/ultrafine-grained intermetallic matrix from spark plasma sintering and crystallization of amorphous phase , 2012 .

[28]  I. Abdyukhanov,et al.  The Study of Nb3Sn Phase Content and Structure Dependence on the Way of Ti Doping in Superconductors Produced by Bronze Route , 2012 .

[29]  Chao Yang,et al.  Fabrication of Ultrafine-Grained Ti66Nb18Cu6.4Ni6.1Al3.5 Composites with High Strength and Distinct Plasticity by Spark Plasma Sintering and Crystallization of Amorphous Phase , 2012 .

[30]  Y. H. Li,et al.  Ultrafine-grained Ti-based composites with high strength and low modulus fabricated by spark plasma sintering , 2013 .

[31]  D. You,et al.  Equiaxed grained structure: A structure in titanium alloys with higher compressive mechanical properties , 2013 .

[32]  Y. H. Li,et al.  Effect of Fe content on glass-forming ability and crystallization behavior of a (Ti69.7Nb23.7Zr4.9Ta1.7)100−xFex alloy synthesized by mechanical alloying , 2013 .

[33]  S. Qu,et al.  Ti-based bulk metallic glass matrix composites with in situ precipitated β-Ti phase fabricated by spark plasma sintering , 2013 .

[34]  S. Qu,et al.  Effect of Minor Alloying Substitution on Glass-Forming Ability and Crystallization Behavior of a Ni57Zr22X8Nb8Al5 (X = Ti, Cu) Alloy Synthesized by Mechanical Alloying , 2013 .

[35]  C. Yang,et al.  Effect of V content on microstructure and mechanical property of a TiVCuNiAl composite fabricated by spark plasma sintering , 2013 .