Reactions of maleic anhydride over TiO2 (001) single crystal surfaces

The reactions of maleic anhydride (MA) have been investigated on the “near” stoichiometric and substoichiometric surfaces of TiO2 by temperature programmed desorption (TPD). Moreover, self-consistent field semiempirical PM3 calculations of MA over relaxed and unrelaxed Ti13O45H38 rutile clusters [simulating the rutile TiO2(011) surface] were conducted on two modes of adsorption. The dissociation of one C–O–C bond following adsorption on a Ti5c4+–O2− site results in a more stable adsorbed species (by 0.5 eV) than the nondissociatively adsorbed molecule. Desorption of a wide range of products in several temperature domains was observed during MA-TPD. In addition to the decomposition pathway to carbon monoxide (CO), carbon dioxide (CO2), acetylene (HC≡CH), and ketene (H2C=C=O), the desorption of several coupling products is also seen: vinylacetylene (HC≡CCH=CH2), butene, traces of butadiene ((H2C=CHCH=CH2), and benzene (C6H6). Over the substoichiometric surfaces these coupling products are more accentuated w...

[1]  Z. Xue,et al.  Transient FTIR Studies of the Reaction Pathway forn-Butane Selective Oxidiation over Vanadyl Pyrophosphate , 1999 .

[2]  Maurizio Casarin,et al.  Molecular Chemisorption on TiO2(110): A Local Point of View , 1998 .

[3]  Li-Qiong Wang,et al.  Electronic structure calculations of small molecule adsorbates on (110) and (100) TiO2 , 1998 .

[4]  M. Gillan,et al.  The adsorption and dissociation of ROH molecules on TiO2(110) , 1998 .

[5]  F. Trifiró The chemistry of oxidation catalysts based on mixed oxides , 1998 .

[6]  J. Yates,et al.  ADSORPTION OF CO ON THE TIO2(110) SURFACE : A THEORETICAL STUDY , 1998 .

[7]  Jingguang G. Chen,et al.  An NEXAFS investigation of the reduction and reoxidation of TiO2(001) , 1998 .

[8]  M. Barteau,et al.  Steady-state catalytic C–C bond formation on reduced TiO2 surfaces , 1997 .

[9]  M. Barteau,et al.  Selectivity and mechanism shifts in the reactions of acetaldehyde on oxidized and reduced TiO2(001) surfaces , 1996 .

[10]  M. Barteau Organic Reactions at Well-Defined Oxide Surfaces. , 1996, Chemical reviews.

[11]  G. Pacchioni,et al.  Cluster and band structure ab initio calculations on the adsorption of CO on acid sites of the TiO2(110) surface , 1996 .

[12]  M. Gillan,et al.  The adsorption of H2O on TiO2 and SnO2(110) studied by first-principles calculations , 1995, mtrl-th/9508009.

[13]  G. M. Zhidomirov,et al.  Cluster quantum-chemical study of the chemisorption of methane on zinc oxide surface , 1995 .

[14]  M. Barteau,et al.  Ketone Coupling on Reduced TiO2 (001) Surfaces: Evidence of Pinacol Formation , 1995 .

[15]  M. Barteau,et al.  Cyclotrimerization of sterically hindered alkynes in ultrahigh vacuum: TPD of tert-butylacetylene on the reduced TiO2(001) surface , 1995 .

[16]  M. Barteau,et al.  Reactions of p-benzoquinone on TiO2(001) single-crystal surfaces : oligomerization and polymerization by reductive coupling , 1994 .

[17]  R. Grasselli,et al.  A molecular level mechanism ofn-butane oxidation to maleic anhydride over vanadyl pyrophosphate , 1994 .

[18]  M. Barteau,et al.  Cyclotrimerization of Alkynes on Reduced TiO2(001) Surfaces , 1994 .

[19]  M. Barteau,et al.  Characterization of TiO2 surfaces active for novel organic syntheses , 1994 .

[20]  Alexis T. Bell,et al.  Quantitative structural analysis of dispersed vanadia species in TiO2(anatase)-supported V2O5 , 1992 .

[21]  M. Barteau,et al.  Surface-dependent pathways for formaldehyde oxidation and reduction on TiO2(001) , 1992 .

[22]  M. Barteau,et al.  Reactions of aliphatic alcohols on the {011}-facetted Ti02 (001) surface , 1990 .

[23]  M. Barteau,et al.  Structure and composition requirements for deoxygenation, dehydration, and ketonization reactions of carboxylic acids on TiO2(001) single-crystal surfaces , 1990 .

[24]  M. Barteau,et al.  Structural dependence of the selectivity of formic acid decomposition on faceted titania (001) surfaces , 1990 .

[25]  M. Barteau,et al.  Reactions of methanol on TiO2(001) single crystal surfaces , 1989 .

[26]  B. K. Hodnett Vanadium-phosphorus Oxide Catalysts for the Selective Oxidation of C-4 Hydrocarbons To Maleic-anhydride , 1985 .

[27]  L. Firment Thermal faceting of the rutile TiO2(001) surface , 1982 .

[28]  E. I. Ko,et al.  Reactions of methanol on W(100) and W(100)-(5 × 1)C surfaces , 1980 .

[29]  R. V. Kasowski,et al.  Ultraviolet photoemission and low-energy-electron diffraction studies of Ti O 2 (rutile) (001) and (110) surfaces , 1979 .

[30]  D. Goodman,et al.  Adsorption and reaction of maleic anhydride on Mo(110), monolayer Pd(111)/Mo(110), and multilayer Pd(111)/Mo(110) , 1996 .

[31]  M. Barteau,et al.  CARBON CARBON BOND FORMATION VIA ALDOLIZATION OF ACETALDEHYDE ON SINGLE-CRYSTAL AND POLYCRYSTALLINE TIO2 SURFACES , 1993 .

[32]  M. Barteau,et al.  Structure-Activity and Structure-Selectivity Relations for Reactions of Carboxylic Acids on TiO2 (001) Surfaces , 1991 .

[33]  Gabriele Centi,et al.  Mechanistic aspects of maleic anhydride synthesis from C4 hydrocarbons over phosphorus vanadium oxide , 1988 .

[34]  G. Emig,et al.  Economics of maleic anhydride production from C-4 feedstocks , 1987 .