A Characterization of Convex Problems in Decentralized Control$^ast$
暂无分享,去创建一个
[1] E. C. Titchmarsh. Introduction to the Theory of Fourier Integrals , 1938 .
[2] J. Partington,et al. Introduction to Functional Analysis , 1981, The Mathematical Gazette.
[3] R. Radner,et al. Team Decision Problems , 1962 .
[4] H. Witsenhausen. A Counterexample in Stochastic Optimum Control , 1968 .
[5] H. Witsenhausen. Separation of estimation and control for discrete time systems , 1971 .
[6] R. Saeks,et al. The analysis of feedback systems , 1972 .
[7] Y. Ho,et al. Team decision theory and information structures in optimal control problems--Part II , 1972 .
[8] D.L. Elliott,et al. Feedback systems: Input-output properties , 1976, Proceedings of the IEEE.
[9] Dante C. Youla,et al. Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .
[10] C. Desoer,et al. On the stabilization of nonlinear systems , 1982, 1982 21st IEEE Conference on Decision and Control.
[11] Christos Papadimitriou,et al. Intractable problems in control theory , 1985, 1985 24th IEEE Conference on Decision and Control.
[12] B. Francis,et al. A Course in H Control Theory , 1987 .
[13] Stephen P. Boyd,et al. Linear controller design: limits of performance , 1991 .
[14] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[15] J. Speyer,et al. Centralized and decentralized solutions of the linear-exponential-Gaussian problem , 1994, IEEE Trans. Autom. Control..
[16] Mohammad Aldeen,et al. Stabilization of decentralized control systems , 1997 .
[17] Petros G. Voulgaris. Control under structural constraints: An input-output approach , 1998, Robustness in Identification and Control.
[18] S. Mitter,et al. Information and control: Witsenhausen revisited , 1999 .
[19] John N. Tsitsiklis,et al. A survey of computational complexity results in systems and control , 2000, Autom..
[20] Srdjan S. Stankovic,et al. Decentralized overlapping control of a platoon of vehicles , 2000, IEEE Trans. Control. Syst. Technol..
[21] T. Başar. Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses , 2001 .
[22] P. Voulgaris. A convex characterization of classes of problems in control with specific interaction and communication structures , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).
[23] Petros G. Voulgaris,et al. OPTIMAL DISTRIBUTED CONTROL WITH DISTRIBUTED DELAYED MEASUREMENTS , 2002 .
[24] S. Lall,et al. Decentralized control information structures preserved under feedback , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..
[25] Guang-Hong Yang,et al. Optimal symmetric H2 controllers for systems with collocated sensors and actuators , 2002, IEEE Trans. Autom. Control..
[26] S. Lall,et al. Decentralized control of unstable systems and quadratically invariant information constraints , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[27] S. Lall,et al. Decentralized control subject to communication and propagation delays , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).
[28] Murti V. Salapaka,et al. Structured optimal and robust control with multiple criteria: a convex solution , 2004, IEEE Transactions on Automatic Control.
[29] S. Lall,et al. On computation of optimal controllers subject to quadratically invariant sparsity constraints , 2004, Proceedings of the 2004 American Control Conference.
[30] M. Rotkowitz. Tractable problems in optimal decentralized control , 2005 .