A system to detect houses and residential street networks in multispectral satellite images

Maps are vital tools for most government agencies and consumers. However, their manual generation and updating is tedious and time consuming. As a step toward automatic map generation, we introduce a novel system to detect houses and street networks in IKONOS multispectral images. Our system consists of four main blocks: multispectral analysis to detect cultural activity, segmentation of possible human activity regions, decomposition of segmented images, and graph theoretical algorithms to extract the street network and to detect houses over the decompositions. We tested our system on a large and diverse data set. Our results indicate the usefulness of our system in detecting houses and street networks, hence generating automated maps.

[1]  Kim L. Boyer,et al.  Linearized vegetation indices based on a formal statistical framework , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Vytautas Klemas,et al.  Remote Sensing of Estuaries: An Overview , 1986, OCEANS '86.

[3]  Yun Zhang,et al.  Optimisation of building detection in satellite images by combining multispectral classification and texture filtering , 1999 .

[4]  Helmut Mayer,et al.  Automatic Object Extraction from Aerial Imagery - A Survey Focusing on Buildings , 1999, Comput. Vis. Image Underst..

[5]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Rafael Wiemker,et al.  Change detection with 1 m resolution satellite and aerial images , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[7]  Wenzhong Shi,et al.  The line segment match method for extracting road network from high-resolution satellite images , 2002, IEEE Trans. Geosci. Remote. Sens..

[8]  Ruzena Bajcsy,et al.  Computer Recognition of Roads from Satellite Pictures , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  Makoto Nagao,et al.  Region extraction and shape analysis in aerial photographs , 1979 .

[10]  Kim L. Boyer,et al.  Classifying land development in high resolution satellite images using straight line statistics , 2002, Object recognition supported by user interaction for service robots.

[11]  Andreas Niedermeier,et al.  Detection of coastlines in SAR images using wavelet methods , 2000, IEEE Trans. Geosci. Remote. Sens..

[12]  Ansgar Brunn,et al.  Hierarchical Bayesian nets for building extraction using dense digital surface models , 1998 .

[13]  T. Avery,et al.  Fundamentals of Remote Sensing and Airphoto Interpretation , 1992 .

[14]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[15]  Allen R. Hanson,et al.  The Ascender System: Automated Site Modeling from Multiple Aerial Images , 1998, Comput. Vis. Image Underst..

[16]  Taejung Kim,et al.  Development of a graph-based approach for building detection , 1999, Image Vis. Comput..

[17]  Jefferey A. Shufelt,et al.  Performance Evaluation and Analysis of Monocular Building Extraction From Aerial Imagery , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Gottfried Konecny,et al.  Mapping from digital satellite image data with special reference to MOMS-02 , 1996 .

[19]  Kim L. Boyer,et al.  A Theoretical and Experimental Investigation of Graph Theoretical Measures for Land Development in Satellite Imagery , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Jefferey A. Shufelt,et al.  Fusion of monocular cues to detect man-made structures in aerial imagery , 1993 .

[21]  Terry Caelli,et al.  Building Detection Using Bayesian Networks , 2000, Int. J. Pattern Recognit. Artif. Intell..

[22]  M. Fradkin,et al.  Building Detection from Multiple Aerial Images in Dense Urban Areas , 2001, Comput. Vis. Image Underst..

[23]  Kim L. Boyer,et al.  Robust detection of buildings in digital surface models , 2002, Object recognition supported by user interaction for service robots.

[24]  James J. Simpson,et al.  A procedure for the detection and removal of cloud shadow from AVHRR data over land , 1998, IEEE Trans. Geosci. Remote. Sens..

[25]  Allen R. Hanson,et al.  Extracting Straight Lines , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[27]  Rama Chellappa,et al.  Delineating buildings by grouping lines with MRFs , 1996, IEEE Trans. Image Process..

[28]  Anthony T. S. Ho Detecting clouds and cloud shadows in multispectral satellite images for tropical areas , 1997 .

[29]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[30]  Azriel Rosenfeld,et al.  Robust detection of straight and circular road segments in noisy aerial images' , 1997, Pattern Recognit..

[31]  Claude Berge,et al.  The Theory Of Graphs , 1962 .

[32]  Ramakant Nevatia,et al.  Detecting buildings in aerial images , 1988, Comput. Vis. Graph. Image Process..

[33]  Ki-Sang Hong,et al.  Road detection in spaceborne SAR images using a genetic algorithm , 2002, IEEE Trans. Geosci. Remote. Sens..

[34]  Jean-Francois Mangin,et al.  Detection of linear features in SAR images: application to road network extraction , 1998, IEEE Trans. Geosci. Remote. Sens..

[35]  Michael Jasinski,et al.  Estimation of subpixel vegetation density of natural regions using satellite multispectral imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[36]  Kim L. Boyer,et al.  Classifying land development in high-resolution panchromatic satellite images using straight-line statistics , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[37]  James J. Simpson,et al.  Cloud shadow detection under arbitrary viewing and illumination conditions , 2000, IEEE Trans. Geosci. Remote. Sens..

[38]  Ramakant Nevatia,et al.  Building Detection and Description from a Single Intensity Image , 1998, Comput. Vis. Image Underst..

[39]  Kim L. Boyer,et al.  Linearized vegetation indices using a formal statistical framework , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[40]  F. Fierens,et al.  Development of cloud, snow, and shadow masking algorithms for VEGETATION imagery , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[41]  David M. McKeown,et al.  Cooperative methods for road tracking in aerial imagery , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[42]  R. Fiset,et al.  Automatic comparison of a topographic map with remotely sensed images in a map updating perspective: The road network case , 1997 .

[43]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[45]  Larry S. Davis,et al.  Hypothesis integration in image understanding systems , 1985, Comput. Vis. Graph. Image Process..

[46]  Fangju Wang,et al.  A knowledge-based system for highway network extraction , 1988 .

[47]  Ramakant Nevatia,et al.  Detection and Modeling of Buildings from Multiple Aerial Images , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Azriel Rosenfeld,et al.  Detecting clouds and cloud shadows on aerial photographs , 1991, Pattern Recognit. Lett..

[49]  James J. Simpson,et al.  Arctic sea ice, cloud, water, and lead classification using neural networks and 1.6-μm data , 2002, IEEE Trans. Geosci. Remote. Sens..

[50]  Ivan Laptev,et al.  Automatic extraction of roads from aerial images based on scale space and snakes , 2000 .

[51]  V. Karathanassi,et al.  A thinning-based method for recognizing and extracting peri-urban road networks from SPOT panchromatic images , 1999 .

[52]  Makoto Nagao,et al.  A Structural Analysis of Complex Aerial Photographs , 1980, Advanced Applications in Pattern Recognition.