On a statistical model of network traffic

A nonlinear analysis of traffic measurements involving a layered neural network (NN) (used for reconstruction of underlying process) has shown that the NN trained on a traffic series reproduces the packet size distribution of real data, which fits the lognormal form. The detailed analysis of the traffic measurements has shown that the reason for appearance of this distribution is a simple aggregation of real data. Applying the principal component analysis, the wavelet filtering, Fourier analysis, and statistical criteria we demonstrated that a few leading components form the main part of network traffic, while residual components play the role of small irregular variations that can be interpreted to be a stochastic noise.

[1]  F. James Statistical Methods in Experimental Physics , 1973 .

[2]  A. Lapedes,et al.  Nonlinear Signal Processing Using Neural Networks , 1987 .

[3]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[4]  U. Frisch,et al.  Wavelet transforms of self-similar processes , 1991 .

[5]  Erkki Oja,et al.  Nonlinear PCA: Algorithms and Applications , 1993 .

[6]  S. Mallat A wavelet tour of signal processing , 1998 .

[7]  V. V. Ivanov,et al.  Wavelet filtering of network traffic measurements , 2003 .

[8]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[9]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[10]  Mehmet Emre Çek,et al.  Analysis of observed chaotic data , 2004 .

[11]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[12]  Andrew L. Rukhin,et al.  Analysis of Time Series Structure SSA and Related Techniques , 2002, Technometrics.

[13]  Philip D. Wasserman,et al.  Neural computing - theory and practice , 1989 .

[14]  Francisco Barceló Arroyo,et al.  Inter-arrival time distribution for channel arrivals in cellular telephony , 1998 .

[15]  Alfred C. Weaver,et al.  Statistical Characterization of Wide-Area Self-Similar Network Traffic , 1996 .

[16]  Cinna Lomnitz,et al.  Fundamentals of Earthquake Prediction , 1994 .

[17]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[18]  Dimitris Kugiumtzis,et al.  CHAOTIC ANALYSIS OF INTERNET PING DATA : Just a Random Number Generator ? , 1998 .

[19]  Thorsteinn S. Rögnvaldsson,et al.  JETNET 3.0—A versatile artificial neural network package , 1994 .

[20]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[21]  Richard G. Baraniuk,et al.  A Multifractal Wavelet Model with Application to Network Traffic , 1999, IEEE Trans. Inf. Theory.

[22]  Ioannis Antoniou,et al.  On the log-normal distribution of network traffic , 2002 .

[23]  V. I. Keilis-Borok,et al.  Symptoms of instability in a system of earthquake-prone faults , 1994 .

[24]  Bernard W. Silverman,et al.  The discrete wavelet transform in S , 1994 .

[25]  I. Johnstone,et al.  Density estimation by wavelet thresholding , 1996 .

[26]  A. Lapedes,et al.  Nonlinear signal processing using neural networks: Prediction and system modelling , 1987 .

[27]  C. D. Cutler,et al.  A theory of correlation dimension for stationary time series , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[28]  V. V. Ivanov,et al.  Nonlinear analysis of network traffic , 2002 .

[29]  P. Akritas,et al.  Identification and prediction of discrete chaotic maps applying a Chebyshev neural network , 2000 .

[30]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[31]  F. James MINUIT Function Minimization and Error Analysis: Reference Manual Version 94.1 , 1994 .

[32]  Gary Taubes Fractals Reemerge in the New Math of the Internet , 1998, Science.