The isomorphism relation for separable C*-algebras
暂无分享,去创建一个
Ilijas Farah | Christian Rosendal | Andrew S. Toms | George A. Elliott | Asger Tornquist | V. Paulsen | I. Farah | G. Elliott | C. Rosendal | Asger Tornquist | Vern Paulsen
[1] Greg Hjorth,et al. Classification and Orbit Equivalence Relations , 1999 .
[2] C. Ward Henson,et al. Model Theory with Applications to Algebra and Analysis: Model theory for metric structures , 2008 .
[3] Su Gao,et al. On the classification of Polish metric spaces up to isometry , 2003 .
[4] Ilijas Farah,et al. The descriptive set theory of C$^*$-algebra invariants , 2011 .
[5] V. Paulsen. Completely Bounded Maps and Operator Algebras: Contents , 2003 .
[6] George A. Elliott,et al. Towards a theory of classification , 2007, 0711.3200.
[7] Julien Melleray. Computing the complexity of the relation of isometry between separable Banach spaces , 2007, Math. Log. Q..
[8] Andrew S. Toms,et al. Regularity properties in the classification program for separable amenable C*-algebras , 2007, 0704.1803.
[9] Martin Mathieu. COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS (Cambridge Studies in Advanced Mathematics 78) , 2004 .
[10] Marcin Sabok,et al. Completeness of the isomorphism problem for separable C*-algebras , 2013, 1306.1049.
[11] Ilijas Farah,et al. Turbulence, orbit equivalence, and the classification of nuclear C*-algebras , 2011 .
[12] A. Kechris. Classical descriptive set theory , 1987 .
[13] Mikael Pichot,et al. Turbulence, representations, and trace‐preserving actions , 2008, 0808.1907.
[14] Anand Pillay,et al. Model theory with applications to algebra and analysis , 2008 .
[15] Ilijas Farah,et al. Model theory of operator algebras II: model theory , 2010, 1004.0741.
[16] Asger Tornquist,et al. Turbulence and Araki-Woods factors , 2009, 0912.1496.
[17] Asger Tornquist,et al. The classification problem for von Neumann factors , 2009, 0903.4484.
[18] Mirna Džamonja,et al. CLASSIFICATION AND ORBIT EQUIVALENCE RELATIONS (Mathematical Surveys and Monographs 75) , 2001 .
[19] Alain Louveau,et al. The complexity of classifying separable Banach spaces up to isomorphism , 2009 .
[20] A dichotomy for the Mackey Borel structure , 2009, 0908.1943.