Automated image registration: II. Intersubject validation of linear and nonlinear models.

PURPOSE Our goal was to validate linear and nonlinear intersubject image registration using an automated method (AIR 3.0) based on voxel intensity. METHOD PET and MRI data from 22 normal subjects were registered to corresponding averaged PET or MRI brain atlases using several specific linear and nonlinear spatial transformation models with an automated algorithm. Validation was based on anatomically defined landmarks. RESULTS Automated registration produced results that were superior to a manual nine parameter variant of the Talairach registration method. Increasing the degrees of freedom in the spatial transformation model improved the accuracy of automated intersubject registration. CONCLUSION Linear or nonlinear automated intersubject registration based on voxel intensities is computationally practical and produces more accurate alignment of homologous landmarks than manual nine parameter Talairach registration. Nonlinear models provide better registration than linear models but are slower.

[1]  Scott T. Grafton,et al.  Automated image registration: I. General methods and intrasubject, intramodality validation. , 1998, Journal of computer assisted tomography.

[2]  H. Steinmetz,et al.  Localization and variability of cytoarchitectonic areas in the human superior temporal cortex , 1996, NeuroImage.

[3]  G. Christensen,et al.  Hippocampal MR imaging morphometry by means of general pattern matching. , 1996, Radiology.

[4]  Kang-Ping Lin,et al.  Elastic mapping technique for intersubject tomographic image registration , 1995, Other Conferences.

[5]  Jack L. Lancaster,et al.  A modality‐independent approach to spatial normalization of tomographic images of the human brain , 1995 .

[6]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[7]  R. Koeppe,et al.  Anatomic standardization: linear scaling and nonlinear warping of functional brain images. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[8]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[9]  J. Mazziotta,et al.  MRI‐PET Registration with Automated Algorithm , 1993, Journal of computer assisted tomography.

[10]  Y. Kosugi,et al.  Neural Network Mapping for Nonlinear Stereotactic Normalization of Brain MR Images , 1993, Journal of computer assisted tomography.

[11]  R. Bajcsy,et al.  Elastically Deforming 3D Atlas to Match Anatomical Brain Images , 1993, Journal of computer assisted tomography.

[12]  J. Mazziotta,et al.  Automated image registration , 1993 .

[13]  J. Mazziotta,et al.  Rapid Automated Algorithm for Aligning and Reslicing PET Images , 1992, Journal of computer assisted tomography.

[14]  Karl J. Friston,et al.  Plastic transformation of PET images. , 1991, Journal of computer assisted tomography.

[15]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[16]  M. Raichle,et al.  A Stereotactic Method of Anatomical Localization for Positron Emission Tomography , 1985, Journal of computer assisted tomography.

[17]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[18]  Edgar M. Housepian Atlas d'anatomie stereotaxique du telencephale. , 1968 .

[19]  Scott T. Grafton,et al.  Automated image registration: I. General methods and intrasubject, intramodality validation. , 1998, Journal of computer assisted tomography.

[20]  H. Steinmetz,et al.  Localization and variability of cytoarchitectonic areas in the human superior temporal cortex , 1996, NeuroImage.

[21]  G. Christensen,et al.  Hippocampal MR imaging morphometry by means of general pattern matching. , 1996, Radiology.

[22]  Kang-Ping Lin,et al.  Elastic mapping technique for intersubject tomographic image registration , 1995, Other Conferences.

[23]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[24]  Jack L. Lancaster,et al.  A modality‐independent approach to spatial normalization of tomographic images of the human brain , 1995 .

[25]  R. Koeppe,et al.  Anatomic standardization: linear scaling and nonlinear warping of functional brain images. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[26]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[27]  J. Mazziotta,et al.  MRI‐PET Registration with Automated Algorithm , 1993, Journal of computer assisted tomography.

[28]  Y. Kosugi,et al.  Neural Network Mapping for Nonlinear Stereotactic Normalization of Brain MR Images , 1993, Journal of computer assisted tomography.

[29]  R. Bajcsy,et al.  Elastically Deforming 3D Atlas to Match Anatomical Brain Images , 1993, Journal of computer assisted tomography.

[30]  J. Mazziotta,et al.  Automated image registration , 1993 .

[31]  J. Mazziotta,et al.  Rapid Automated Algorithm for Aligning and Reslicing PET Images , 1992, Journal of computer assisted tomography.

[32]  Karl J. Friston,et al.  Plastic transformation of PET images. , 1991, Journal of computer assisted tomography.

[33]  M. Raichle,et al.  A Stereotactic Method of Anatomical Localization for Positron Emission Tomography , 1985, Journal of computer assisted tomography.

[34]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[35]  Edgar M. Housepian Atlas d'anatomie stereotaxique du telencephale. , 1968 .