A study of the end‐plate potential in sodium‐deficient solution

1. The effect of anticholinesterases in lengthening the end‐plate potential is much more pronounced in a low‐sodium solution than in an ordinary Ringer‐curare solution.

[1]  R. H. Adrian,et al.  The potassium and chloride conductance of frog muscle membrane , 1962, The Journal of physiology.

[2]  D. Noble,et al.  The chloride conductance of frog skeletal muscle , 1960, The Journal of physiology.

[3]  J. Kelly Antagonism between Na+ and Ca2+ at the Neuromuscular Junction , 1965, Nature.

[4]  S. W. Kuffler,et al.  EFFECT OF ESERINE ON NEUROMUSCULAR TRANSMISSION , 1942 .

[5]  O. Hutter,et al.  Post‐tetanic restoration of neuromuscular transmission blocked by d‐tubocurarine , 1952, Journal of Physiology.

[6]  B. Katz,et al.  Local activity at a depolarized nerve‐muscle junction , 1955, The Journal of physiology.

[7]  A. Hodgkin,et al.  The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres , 1960, The Journal of physiology.

[8]  B. Katz,et al.  Statistical factors involved in neuromuscular facilitation and depression , 1954, The Journal of physiology.

[9]  A TAKEUCHI,et al.  On the permeability of end‐plate membrane during the action of transmitter , 1960, The Journal of physiology.

[10]  A. Hodgkin,et al.  The influence of potassium and chloride ions on the membrane potential of single muscle fibres , 1959, The Journal of physiology.

[11]  N. Takeuchi Some properties of conductance changes at the end‐plate membrane during the action of acetylcholine , 1963, The Journal of physiology.

[12]  F. Vyskocil,et al.  The effect of atropine on the frog sartorius neuromuscular junction , 1968, The Journal of physiology.

[13]  R. Birks THE ROLE OF SODIUM IONS IN THE METABOLISM OF ACETYLCHOLINE. , 1963, Canadian journal of biochemistry and physiology.

[14]  R. Miledi Junctional and extra‐junctional acetylcholine receptors in skeletal muscle fibres , 1960, The Journal of physiology.

[15]  R. Rahamimoff,,et al.  Inhibitory Action of Sodium Ions on Transmitter Release at the Motor End-plate , 1967, Nature.

[16]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.

[17]  W. Ashby,et al.  The Neurophysiological Basis of Mind , 1953 .

[18]  B. Katz,et al.  An analysis of the end‐plate potential recorded with an intra‐cellular electrode , 1951, The Journal of physiology.

[19]  S. W. Kuffler,et al.  NATURE OF THE "ENDPLATE POTENTIAL" IN CURARIZED MUSCLE , 1941 .

[20]  B. Katz,et al.  The effect of calcium on acetylcholine release from motor nerve terminals , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  T. Furukawa,et al.  Effects of tetrodotoxin on the neuromuscular junction. , 1959, The Japanese journal of physiology.

[22]  E J Conway,et al.  Potassium accumulation in muscle and associated changes. , 1941, The Journal of physiology.

[23]  B. Katz,et al.  Tetrodotoxin and neuromuscular transmission , 1967, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[24]  T. Narahashi,et al.  Stabilization and rectification of muscle fiber membrane by tetrodotoxin. , 1960, The American journal of physiology.

[25]  W. V. Macfarlane,et al.  Actions of anti-cholinesterases on endplate potential of frog muscle. , 1949, Journal of neurophysiology.

[26]  O. Hutter,et al.  Effect of nitrate and other anions on the membrane resistance of frog skeletal muscle , 1959, The Journal of physiology.

[27]  A TAKEUCHI,et al.  Active phase of frog's end-plate potential. , 1959, Journal of neurophysiology.

[28]  B. Katz,et al.  Propagation of electric activity in motor nerve terminals , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.