Global analysis of the gravitational wave signal from Galactic binaries

Galactic ultra compact binaries are expected to be the dominant source of gravitational waves in the milli-Hertz frequency band. Of the tens of millions of galactic binaries with periods shorter than an hour, it is estimated that a few tens of thousand will be resolved by the future Laser Interferometer Space Antenna (LISA). The unresolved remainder will be the main source of ``noise'' between 1-3 milli-Hertz. Typical galactic binaries are millions of years from merger, and consequently their signals will persist for the the duration of the LISA mission. Extracting tens of thousands of overlapping galactic signals and characterizing the unresolved component is a central challenge in LISA data analysis, and a key contribution to arriving at a global solution that simultaneously fits for all signals in the band. Here we present an end-to-end analysis pipeline for galactic binaries that uses trans-dimensional Bayesian inference to develop a time-evolving catalog of sources as data arrive from the LISA constellation.

[1]  Warren R. Brown,et al.  A 1201 s Orbital Period Detached Binary: The First Double Helium Core White Dwarf LISA Verification Binary , 2020, The Astrophysical Journal.

[2]  E. Phinney,et al.  Orbital Decay in a 20 Minute Orbital Period Detached Binary with a Hydrogen-poor Low-mass White Dwarf , 2019, The Astrophysical Journal.

[3]  A. Piro Inferring the Presence of Tides in Detached White Dwarf Binaries , 2019, The Astrophysical Journal.

[4]  T. Littenberg,et al.  Prospects for Gravitational Wave Measurement of ZTF J1539+5027 , 2019, The Astrophysical Journal.

[5]  Richard Walters,et al.  General relativistic orbital decay in a seven-minute-orbital-period eclipsing binary system , 2019, Nature.

[6]  N. Cornish,et al.  Detecting gravitational wave bursts with LISA in the presence of instrumental glitches , 2018, Physical Review D.

[7]  T. Littenberg,et al.  Binary white dwarfs as laboratories for extreme gravity with LISA , 2018, Classical and Quantum Gravity.

[8]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[9]  T. Littenberg Gravitational wave sources as timing references for LISA data , 2018, Physical Review D.

[10]  G. Nelemans,et al.  LISA verification binaries with updated distances from Gaia Data Release 2 , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  N. Cornish,et al.  Galactic binary science with the new LISA design , 2017, 1703.09858.

[12]  Anthony G. A. Brown,et al.  Prospects for detection of detached double white dwarf binaries with Gaia, LSST and LISA , 2017, 1703.02555.

[13]  Michael Betancourt,et al.  A Conceptual Introduction to Hamiltonian Monte Carlo , 2017, 1701.02434.

[14]  A. Sesana Prospects for Multiband Gravitational-Wave Astronomy after GW150914. , 2016, Physical review letters.

[15]  S. Klimenko,et al.  Leveraging waveform complexity for confident detection of gravitational waves , 2015, 1509.06423.

[16]  I. Mandel,et al.  Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations , 2015, 1501.05823.

[17]  Neil J. Cornish,et al.  Bayesian inference for spectral estimation of gravitational wave detector noise , 2014, 1410.3852.

[18]  Neil J. Cornish,et al.  Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.

[19]  G. Nelemans,et al.  CONSTRAINING PARAMETERS OF WHITE-DWARF BINARIES USING GRAVITATIONAL-WAVE AND ELECTROMAGNETIC OBSERVATIONS , 2014, 1406.3599.

[20]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[21]  Gabriele B. Durrant,et al.  Journal of the Royal Statistical Society Series A (Statistics in Society). Special Issue on Paradata , 2013 .

[22]  T. Littenberg,et al.  Astrophysical Model Selection in Gravitational Wave Astronomy , 2012, 1209.6286.

[23]  G. Nelemans,et al.  Supernova Type Ia progenitors from merging double white dwarfs - Using a new population synthesis model , 2012, 1208.6446.

[24]  J. Fuller,et al.  Dynamical tides in compact white dwarf binaries: tidal synchronization and dissipation , 2011, 1108.4910.

[25]  T. Littenberg A Detection Pipeline for Galactic Binaries in LISA Data , 2011, 1106.6355.

[26]  N. Cornish,et al.  Discriminating between a stochastic gravitational wave background and instrument noise , 2010, 1002.1291.

[27]  G. Nelemans,et al.  The chemical composition of donors in AM CVn stars and ultracompact X-ray binaries: observational tests of their formation , 2009, 0909.3376.

[28]  N. Seto Erratum: Proposal for Determining the Total Masses of Eccentric Binaries Using Signature of Periastron Advance in Gravitational Waves [Phys. Rev. Lett.87, 251101 (2001)] , 2008 .

[29]  P. Graff,et al.  The Mock LISA Data Challenges: from challenge 3 to challenge 4 , 2008, 0806.2110.

[30]  G.Mitselmakher,et al.  Coherent method for detection of gravitational wave bursts , 2008, 0802.3232.

[31]  A. Vecchio,et al.  Probing white dwarf interiors with LISA: periastron precession in eccentric double white dwarfs. , 2007, Physical review letters.

[32]  T. Littenberg,et al.  Tests of Bayesian model selection techniques for gravitational wave astronomy , 2007, 0704.1808.

[33]  J. C. Cornish Solution to the galactic foreground problem for LISA , 2006, astro-ph/0611546.

[34]  M. Sambridge,et al.  Trans-dimensional inverse problems, model comparison and the evidence , 2006 .

[35]  A. Vecchio,et al.  A Markov chain Monte Carlo approach to the study of massive black hole binary systems with LISA , 2006 .

[36]  N. Cornish,et al.  LISA data analysis using Markov chain Monte Carlo methods , 2005 .

[37]  N. Christensen,et al.  Bayesian modeling of source confusion in LISA data , 2005, gr-qc/0506055.

[38]  N. Christensen,et al.  LISA source confusion: identification and characterization of signals , 2005, gr-qc/0503121.

[39]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[40]  G. Mitselmakher,et al.  A coherent method for detection of gravitational wave bursts , 2004 .

[41]  P. Goggans,et al.  Using Thermodynamic Integration to Calculate the Posterior Probability in Bayesian Model Selection Problems , 2004 .

[42]  M. Bershady,et al.  Publications of the Astronomical Society of the Pacific , 2004 .

[43]  N. Cornish,et al.  LISA Source Confusion , 2004, gr-qc/0404129.

[44]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[45]  N. Seto Annual modulation of the galactic binary confusion noise background and LISA data analysis , 2004, gr-qc/0403014.

[46]  N. Cornish,et al.  LISA Data Analysis: Source Identification and Subtraction , 2003, astro-ph/0301548.

[47]  S. Larson,et al.  The LISA optimal sensitivity , 2002, gr-qc/0209039.

[48]  N. Seto Proposal for determining the total masses of eccentric binaries using signature of periastron advance in gravitational waves. , 2001, Physical review letters.

[49]  C. Hogan,et al.  Estimating stochastic gravitational wave backgrounds with the Sagnac calibration , 2001, astro-ph/0104266.

[50]  J. Armstrong,et al.  Discriminating a gravitational wave background from instrumental noise in the LISA detector , 2000 .

[51]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[52]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .

[53]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[54]  M. Kool,et al.  The minimum orbital period for ultra-compact binaries with helium burning secondaries , 1986 .

[55]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[56]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[57]  B. Flannery,et al.  Gravitational radiation and the evolution of cataclysmic binaries , 1980 .

[58]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .