Molecular dynamics implementation in MSINDO: Study of silicon clusters

Born–Oppenheimer molecular dynamics is implemented in the semiempirical self‐consistent field molecular orbital method MSINDO. The method is employed for the investigation of the structure and dynamics of silicon clusters of various sizes. The reliability of the present parameterization for silicon compounds is demonstrated by a comparison of the results of simulated annealing and of density functional calculations of Sin clusters (n = 5–7). The melting behavior of the Si7 cluster is investigated and the MSINDO results are compared to previous high‐level calculations. The efficiency of the present approach for the treatment of large systems is demonstrated by an extensive simulated annealing study of the Si45 and Si60 clusters. New Si45 and Si60 structures are found and evaluated. The relative stability of various energy minimum structures is compared with density functional calculations and available literature data. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1255–1263, 2004

[1]  P. Cao,et al.  Twenty six stable structures for cluster Si10 : A full-potential linear-muffin-tin-orbital molecular-dynamics study , 2000 .

[2]  Michael C. Zerner,et al.  Removal of core orbitals in ‘valence orbital only’ calculations , 1972 .

[3]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[4]  Karl Jug,et al.  Consistent modifications of SINDO1: I. Approximations and parameters , 1999 .

[5]  First principles calculation of the thermodynamic properties of silicon clusters , 1998 .

[6]  M. Menon,et al.  Structure of Si60. Cage versus network structures , 1994 .

[7]  Karl Jug,et al.  Consistent modifications of SINDO1: II. Applications to first‐ and second‐row elements , 1999 .

[8]  G. Pacchioni,et al.  Silicon and germanium clusters. A theoretical study of their electronic structures and properties , 1986 .

[9]  Stich,et al.  Silicon clusters of intermediate size: energetics, dynamics, and thermal effects , 2000, Physical review letters.

[10]  M. Dupuis,et al.  Ab initio SCF molecular dynamics: Exploring the potential energy surface of small silicon clusters , 1992 .

[11]  A. Zdetsis The real structure of theSi6cluster , 2001 .

[12]  B. K. Panda,et al.  Orthogonal tight-binding molecular-dynamics simulations of silicon clusters , 2001 .

[13]  Orbital-free molecular dynamics simulations of melting in Na8 and Na20: Melting in steps , 1998, physics/9809019.

[14]  Karl Jug,et al.  Structure and properties of small silicon and aluminum clusters , 1988 .

[15]  K. Jug,et al.  Stability of medium size silicon clusters , 1993 .

[16]  S. Nagase Theoretical study of heteroatom-containing compounds. From aromatic and polycyclic molecules to hollow cage clusters , 1993 .

[17]  Bernd Hartke Global geometry optimization of small silicon clusters at the level of density functional theory , 1998 .

[18]  K. Lee,et al.  Semiempirical tight binding method study of small Ge and Sn clusters , 2000 .

[19]  K. Gingerich,et al.  Thermodynamic investigation of the Si7 and Si8 clusters by Knudsen cell mass spectrometry , 2001 .

[20]  E. Ortí,et al.  AM1 prediction of the equilibrium geometry of Si60 , 1993 .

[21]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[22]  P. Giannozzi,et al.  Thirteen‐atom clusters: Equilibrium geometries, structural transformations, and trends in Na, Mg, Al, and Si , 1992 .

[23]  C. Zybill Si60, an Analogue of C60? , 1992 .

[24]  K. Jug,et al.  Comparison of size effects in aluminum and silicon clusters , 1990 .

[25]  A. Ogura,et al.  Raman spectra of size-selected silicon clusters and comparison with calculated structures , 1993, Nature.

[26]  Bicai Pan,et al.  Structures of medium-sized silicon clusters , 1998, Nature.

[27]  The melting behaviour of small silicon clusters , 1994 .

[28]  B. Song,et al.  Stability of neutral and charged Si50 cage and stacked structure and in comparison with Si60 structures , 2003 .

[29]  Si60 clusters: AM1 computed Ih/C2v relative populations , 1994 .

[30]  T. Rantala,et al.  Structure of the Si45 cluster , 1991 .

[31]  Kavita Joshi,et al.  Abnormally high melting temperature of the Sn 10 cluster , 2002 .

[32]  Wang,et al.  Generalized gradient approximation for the exchange-correlation hole of a many-electron system. , 1996, Physical review. B, Condensed matter.

[33]  Gerald Geudtner,et al.  MSINDO parameterization for third‐row transition metals , 2001, J. Comput. Chem..

[34]  J. Leszczynski,et al.  Possibility of the Existence of Non-Carbon Fullerenes: Ab Initio HF and DFT/B3LYP Studies of the IV Main Group Fullerene-Like Species , 1999 .

[35]  Gerald Geudtner,et al.  MSINDO parameterization for third‐row main group elements , 2000 .

[36]  Kaxiras Effect of surface reconstruction on stability and reactivity of Si clusters. , 1990, Physical review letters.

[37]  David Alan Drabold,et al.  Molecular-dynamics determination of electronic and vibrational spectra, and equilibrium structures of small Si clusters. , 1990, Physical review. B, Condensed matter.

[38]  Koblar A. Jackson,et al.  Density-functional-based predictions of Raman and IR spectra for small Si clusters , 1997 .

[39]  Messmer,et al.  Bonding and structures in silicon clusters: A valence-bond interpretation. , 1990, Physical review. B, Condensed matter.

[40]  W. A. Lester,et al.  Geometric, energetic, and bonding properties of neutral and charged copper-doped silicon clusters , 2002 .

[41]  Caizhuang Wang,et al.  Structures and dynamical properties of C{sub n}, Si{sub n}, Ge{sub n}, and Sn{sub n} clusters with n up to 13 , 2000 .

[42]  K. Jug,et al.  Consistent parametrization of semiempirical MO methods , 1992 .

[43]  K. Raghavachari Theoretical study of small silicon clusters: Cyclic ground state structure of Si3 , 1985 .

[44]  Karl Jug,et al.  SINDO1. A semiempirical SCF MO method for molecular binding energy and geometry I. Approximations and parametrization , 1980 .

[45]  Andreoni,et al.  Transferability of bulk empirical potentials to silicon microclusters: A critical study. , 1990, Physical review. B, Condensed matter.

[46]  Andreoni,et al.  Equilibrium structures and finite temperature properties of silicon microclusters from ab initio molecular-dynamics calculations. , 1988, Physical review letters.

[47]  K. Gingerich,et al.  Mass spectrometric investigation of the thermodynamic properties of the Si6 molecule , 1996 .

[48]  K. Jug,et al.  Geometries and stabilities of Si8 clusters , 1989 .

[49]  S. Louie,et al.  SOLID C36 : CRYSTAL STRUCTURES, FORMATION, AND EFFECTS OF DOPING , 1999 .

[50]  D. Que,et al.  Distorted icosahedral cage structure of Si 60 clusters , 2000 .

[51]  Raghavachari,et al.  Structure and bonding in small silicon clusters. , 1985, Physical review letters.

[52]  Broughton,et al.  Relaxation of icosahedral-cage silicon clusters via tight-binding molecular dynamics. , 1991, Physical Review B (Condensed Matter).

[53]  K. Raghavachari Theoretical study of small silicon clusters: Equilibrium geometries and electronic structures of Sin (n=2–7,10) , 1986 .

[54]  Andreoni,et al.  Structure of nanoscale silicon clusters. , 1994, Physical review letters.

[55]  A. Sieck,et al.  Structure and vibrational spectra of low-energy silicon clusters , 1997 .

[56]  Tománek,et al.  Structure and bonding of small semiconductor clusters. , 1987, Physical review. B, Condensed matter.

[57]  M. Karplus,et al.  Semiclassical trajectory approach to photoisomerization , 1975 .

[58]  M. Piqueras,et al.  Ab initio investigation of icosahedral Si60 , 1996 .

[59]  K. Gingerich,et al.  MASS SPECTROMETRIC INVESTIGATION OF THE THERMODYNAMIC PROPERTIES OF THE SI5 MOLECULE , 1994 .

[60]  Flytzanis,et al.  Simulation of the melting behavior of small silicon clusters. , 1995, Physical review. B, Condensed matter.

[61]  Claude Leforestier,et al.  Classical trajectories using the full abinitio potential energy surface H−+CH4→CH4+H− , 1978 .

[62]  H. Müller,et al.  Molekulardynamische Untersuchungen an Si-Clustern Teil II. Si-Cluster bei endlichen Temperaturen , 1994 .

[63]  K. Balasubramanian,et al.  Geometries and spectroscopic properties of silicon clusters (Si5, Si5+, Si5−, Si6, Si6+, and Si6−) , 2002 .

[64]  K. Jug Growth of small silicon and aluminum clusters , 1989 .

[65]  A. Shvartsburg,et al.  Solid clusters above the bulk melting point , 2000, Physical review letters.

[66]  Krishnan Raghavachari,et al.  Bonding and stabilities of small silicon clusters: A theoretical study of Si7–Si10 , 1988 .

[67]  Structure and stability of Si45 clusters: A generalized tight-binding molecular-dynamics approach. , 1995, Physical review. B, Condensed matter.

[68]  K. Zickfeld,et al.  Theoretical study of the laser-induced femtosecond dynamics of small Si n clusters , 1999 .

[69]  S. Sinnott,et al.  Density functional study of the bonding in small silicon clusters , 1992 .

[70]  Xiaolei Zhu,et al.  Structures and stabilities of small silicon clusters: Ab initio molecular-orbital calculations of Si7–Si11 , 2003 .

[71]  Kaxiras,et al.  Shape of small silicon clusters. , 1993, Physical review letters.

[72]  Chelikowsky,et al.  Photoemission spectra and structures of Si clusters at finite temperature. , 1995, Physical review letters.

[73]  Timothy Clark,et al.  The structure and stability of Si60 and Ge60 cages: A computational study , 2003, J. Comput. Chem..

[74]  R. Smalley,et al.  FT‐ICR probes of silicon cluster chemistry: The special behavior of Si+39 , 1987 .

[75]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[76]  O. Sankey,et al.  Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. , 1989, Physical review. B, Condensed matter.

[77]  Tománek,et al.  Calculation of magic numbers and the stability of small Si clusters. , 1986, Physical review letters.