A Scalable FETI – DP Algorithm for a Semi – coercive Variational Inequality

We develop an optimal algorithm for the numerical solution of semi-coercive variational inequalities by combining dual-primal FETI algorithms with recent results for bound and equality constrained quadratic programming problems. The discretized version of the model problem, obtained by using the FETI–DP methodology, is reduced by the duality theory of convex optimization to a quadratic programming problem with bound and equality constraints, which is solved by a new algorithm with a known rate of convergence given in terms of the spectral condition number of the quadratic problem. We present convergence bounds that guarantee the scalability of the algorithm. These results are confirmed by numerical experiments.

[1]  J. Mandel,et al.  Convergence of a substructuring method with Lagrange multipliers , 1994 .

[2]  C. Farhat,et al.  A scalable dual-primal domain decomposition method , 2000, Numer. Linear Algebra Appl..

[3]  Y. Maday,et al.  Optimal convergence properties of the FETI domain decomposition method , 2007 .

[4]  David Horák,et al.  Scalable FETI with optimal dual penalty for a variational inequality , 2004, Numer. Linear Algebra Appl..

[5]  C. Farhat,et al.  A numerically scalable dual-primal substructuring method for the solution of contact problems––part I: the frictionless case , 2004 .

[6]  R. Kornhuber Adaptive monotone multigrid methods for nonlinear variational problems , 1997 .

[7]  C. Farhat,et al.  The two-level FETI method for static and dynamic plate problems Part I: An optimal iterative solver for biharmonic systems , 1998 .

[8]  R. Kornhuber,et al.  Adaptive multigrid methods for Signorini’s problem in linear elasticity , 2001 .

[9]  Clark R. Dohrmann,et al.  Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..

[10]  J. Mandel,et al.  An algebraic theory for primal and dual substructuring methods by constraints , 2005 .

[11]  Zdenek Dostál,et al.  Box Constrained Quadratic Programming with Proportioning and Projections , 1997, SIAM J. Optim..

[12]  J. Mandel,et al.  Etude algébrique d'une méthode multigrille pour quelques problèmes de frontière libre , 1984 .

[13]  V. Torczon,et al.  A GLOBALLY CONVERGENT AUGMENTED LAGRANGIAN ALGORITHM FOR OPTIMIZATION WITH GENERAL CONSTRAINTS AND SIMPLE BOUNDS , 2002 .

[14]  C. Farhat,et al.  A Scalable Substructuring Method By Lagrange Multipliers For Plate Bending Problems , 1996 .

[15]  J. Sch Efficient Contact Solvers Based on Domain Decomposition Techniques , 2001 .

[16]  J. Haslinger,et al.  Solution of Variational Inequalities in Mechanics , 1988 .

[17]  Zdenek Dostál,et al.  An Optimal Algorithm for Bound and Equality Constrained Quadratic Programming Problems with Bounded Spectrum , 2006, Computing.

[18]  David Horák,et al.  A scalable FETI-DP algorithm with non-penetration mortar conditions on contact interface , 2009, J. Comput. Appl. Math..

[19]  O. Axelsson Iterative solution methods , 1995 .

[20]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[21]  Z. Dostál,et al.  Solution of contact problems by FETI domain decomposition with natural coarse space projections , 2000 .

[22]  J. Schöberl Minimizing quadratic functions over non-negative cone with the rate of convergence and finite termination , 2007 .

[23]  Linz,et al.  Solving the Signorini Problem on the Basis of Domain Decomposition Techniques , .

[24]  Edmund Pinney,et al.  Nonlinear differential equations , 1955 .

[25]  Daniel Rixen,et al.  Extended preconditioners for the FETI method applied to constrained problems , 2002 .

[26]  Dan Stefanica,et al.  FETI and FETI-DP Methods for Spectral and Mortar Spectral Elements: A Performance Comparison , 2002, J. Sci. Comput..

[27]  Z. Dostál,et al.  Duality-based domain decomposition with natural coarse-space for variational inequalities0 , 2000 .

[28]  David Dureisseix,et al.  A domain decomposition method with Lagrange multipliers for the massively parallel solution of large-scale contact problems , 2002 .

[29]  Barbara I. Wohlmuth,et al.  Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.

[30]  Z. Dostál,et al.  A scalable FETI-DP algorithm for a coercive variational inequality , 2005 .

[31]  Charbel Farhat,et al.  An Unconventional Domain Decomposition Method for an Efficient Parallel Solution of Large-Scale Finite Element Systems , 1992, SIAM J. Sci. Comput..

[32]  David Horák,et al.  Scalability and FETI based algorithm for large discretized variational inequalities , 2003, Math. Comput. Simul..

[33]  A. Sändig,et al.  Nonlinear Differential Equations , 1980 .

[34]  Jan Mandel,et al.  On the convergence of a dual-primal substructuring method , 2000, Numerische Mathematik.

[35]  C. Farhat,et al.  A numerically scalable domain decomposition method for the solution of frictionless contact problems , 2001 .

[36]  Zdenek Dostál,et al.  Semi-monotonic inexact augmented Lagrangians for quadratic programing with equality constraints , 2005, Optim. Methods Softw..

[37]  Olof B. Widlund,et al.  DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS , 2022 .

[38]  O. Widlund,et al.  FETI and Neumann--Neumann Iterative Substructuring Methods: Connections and New Results , 1999 .

[39]  Z. Dostál,et al.  On Scalable Algorithms for Numerical Solution of Variational Inequalities Based on FETI and Semi-monotonic Augmented Lagrangians , 2005 .

[40]  Rolf Krause,et al.  Monotone Multigrid Methods on Nonmatching Grids for Nonlinear Multibody Contact Problems , 2003, SIAM J. Sci. Comput..

[41]  Zdenek Dostál,et al.  Augmented Lagrangians with Adaptive Precision Control for Quadratic Programming with Simple Bounds and Equality Constraints , 2002, SIAM J. Optim..

[42]  Dan Stefanica,et al.  A Numerical Study of FETI Algorithms for Mortar Finite Element Methods , 2001, SIAM J. Sci. Comput..