A Scalable FETI – DP Algorithm for a Semi – coercive Variational Inequality
暂无分享,去创建一个
[1] J. Mandel,et al. Convergence of a substructuring method with Lagrange multipliers , 1994 .
[2] C. Farhat,et al. A scalable dual-primal domain decomposition method , 2000, Numer. Linear Algebra Appl..
[3] Y. Maday,et al. Optimal convergence properties of the FETI domain decomposition method , 2007 .
[4] David Horák,et al. Scalable FETI with optimal dual penalty for a variational inequality , 2004, Numer. Linear Algebra Appl..
[5] C. Farhat,et al. A numerically scalable dual-primal substructuring method for the solution of contact problems––part I: the frictionless case , 2004 .
[6] R. Kornhuber. Adaptive monotone multigrid methods for nonlinear variational problems , 1997 .
[7] C. Farhat,et al. The two-level FETI method for static and dynamic plate problems Part I: An optimal iterative solver for biharmonic systems , 1998 .
[8] R. Kornhuber,et al. Adaptive multigrid methods for Signorini’s problem in linear elasticity , 2001 .
[9] Clark R. Dohrmann,et al. Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..
[10] J. Mandel,et al. An algebraic theory for primal and dual substructuring methods by constraints , 2005 .
[11] Zdenek Dostál,et al. Box Constrained Quadratic Programming with Proportioning and Projections , 1997, SIAM J. Optim..
[12] J. Mandel,et al. Etude algébrique d'une méthode multigrille pour quelques problèmes de frontière libre , 1984 .
[13] V. Torczon,et al. A GLOBALLY CONVERGENT AUGMENTED LAGRANGIAN ALGORITHM FOR OPTIMIZATION WITH GENERAL CONSTRAINTS AND SIMPLE BOUNDS , 2002 .
[14] C. Farhat,et al. A Scalable Substructuring Method By Lagrange Multipliers For Plate Bending Problems , 1996 .
[15] J. Sch. Efficient Contact Solvers Based on Domain Decomposition Techniques , 2001 .
[16] J. Haslinger,et al. Solution of Variational Inequalities in Mechanics , 1988 .
[17] Zdenek Dostál,et al. An Optimal Algorithm for Bound and Equality Constrained Quadratic Programming Problems with Bounded Spectrum , 2006, Computing.
[18] David Horák,et al. A scalable FETI-DP algorithm with non-penetration mortar conditions on contact interface , 2009, J. Comput. Appl. Math..
[19] O. Axelsson. Iterative solution methods , 1995 .
[20] D. Rixen,et al. FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .
[21] Z. Dostál,et al. Solution of contact problems by FETI domain decomposition with natural coarse space projections , 2000 .
[22] J. Schöberl. Minimizing quadratic functions over non-negative cone with the rate of convergence and finite termination , 2007 .
[23] Linz,et al. Solving the Signorini Problem on the Basis of Domain Decomposition Techniques , .
[24] Edmund Pinney,et al. Nonlinear differential equations , 1955 .
[25] Daniel Rixen,et al. Extended preconditioners for the FETI method applied to constrained problems , 2002 .
[26] Dan Stefanica,et al. FETI and FETI-DP Methods for Spectral and Mortar Spectral Elements: A Performance Comparison , 2002, J. Sci. Comput..
[27] Z. Dostál,et al. Duality-based domain decomposition with natural coarse-space for variational inequalities0 , 2000 .
[28] David Dureisseix,et al. A domain decomposition method with Lagrange multipliers for the massively parallel solution of large-scale contact problems , 2002 .
[29] Barbara I. Wohlmuth,et al. Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.
[30] Z. Dostál,et al. A scalable FETI-DP algorithm for a coercive variational inequality , 2005 .
[31] Charbel Farhat,et al. An Unconventional Domain Decomposition Method for an Efficient Parallel Solution of Large-Scale Finite Element Systems , 1992, SIAM J. Sci. Comput..
[32] David Horák,et al. Scalability and FETI based algorithm for large discretized variational inequalities , 2003, Math. Comput. Simul..
[33] A. Sändig,et al. Nonlinear Differential Equations , 1980 .
[34] Jan Mandel,et al. On the convergence of a dual-primal substructuring method , 2000, Numerische Mathematik.
[35] C. Farhat,et al. A numerically scalable domain decomposition method for the solution of frictionless contact problems , 2001 .
[36] Zdenek Dostál,et al. Semi-monotonic inexact augmented Lagrangians for quadratic programing with equality constraints , 2005, Optim. Methods Softw..
[37] Olof B. Widlund,et al. DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS , 2022 .
[38] O. Widlund,et al. FETI and Neumann--Neumann Iterative Substructuring Methods: Connections and New Results , 1999 .
[39] Z. Dostál,et al. On Scalable Algorithms for Numerical Solution of Variational Inequalities Based on FETI and Semi-monotonic Augmented Lagrangians , 2005 .
[40] Rolf Krause,et al. Monotone Multigrid Methods on Nonmatching Grids for Nonlinear Multibody Contact Problems , 2003, SIAM J. Sci. Comput..
[41] Zdenek Dostál,et al. Augmented Lagrangians with Adaptive Precision Control for Quadratic Programming with Simple Bounds and Equality Constraints , 2002, SIAM J. Optim..
[42] Dan Stefanica,et al. A Numerical Study of FETI Algorithms for Mortar Finite Element Methods , 2001, SIAM J. Sci. Comput..