AMBER: Automatic Supervision for Multi-Attribute Extraction

The extraction of multi-attribute objects from the deep web is the bridge between the unstructured web and structured data. Existing approaches either induce wrappers from a set of human-annotated pages or leverage repeated structures on the page without supervision. What the former lack in automation, the latter lack in accuracy. Thus accurate, automatic multi-attribute object extraction has remained an open challenge. AMBER overcomes both limitations through mutual supervision between the repeated structure and automatically produced annotations. Previous approaches based on automatic annotations have suffered from low quality due to the inherent noise in the annotations and have attempted to compensate by exploring multiple candidate wrappers. In contrast, AMBER compensates for this noise by integrating repeated structure analysis with annotation-based induction: The repeated structure limits the search space for wrapper induction, and conversely, annotations allow the repeated structure analysis to distinguish noise from relevant data. Both, low recall and low precision in the annotations are mitigated to achieve almost human quality (more than 98 percent) multi-attribute object extraction. To achieve this accuracy, AMBER needs to be trained once for an entire domain. AMBER bootstraps its training from a small, possibly noisy set of attribute instances and a few unannotated sites of the domain.

[1]  Clement T. Yu,et al.  Automatic extraction of dynamic record sections from search engine result pages , 2006, VLDB.

[2]  Nicholas Kushmerick,et al.  Wrapper Induction for Information Extraction , 1997, IJCAI.

[3]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[4]  Ravi Kumar,et al.  Automatic Wrappers for Large Scale Web Extraction , 2011, Proc. VLDB Endow..

[5]  Ronen Feldman,et al.  Self-supervised relation extraction from the Web , 2007, Knowledge and Information Systems.

[6]  Michael Benedikt,et al.  XPath leashed , 2009, CSUR.

[7]  Wei-Ying Ma,et al.  Simultaneous record detection and attribute labeling in web data extraction , 2006, KDD '06.

[8]  W. Marsden I and J , 2012 .

[9]  Craig A. Knoblock,et al.  Hierarchical Wrapper Induction for Semistructured Information Sources , 2004, Autonomous Agents and Multi-Agent Systems.

[10]  Berthier A. Ribeiro-Neto,et al.  A brief survey of web data extraction tools , 2002, SGMD.

[11]  Alberto H. F. Laender,et al.  DEByE - Data Extraction By Example , 2002, Data Knowl. Eng..

[12]  Pierre Senellart,et al.  Automatic wrapper induction from hidden-web sources with domain knowledge , 2008, WIDM '08.

[13]  Rajeev Rastogi,et al.  Web-scale information extraction with vertex , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[14]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[15]  Jayant Madhavan,et al.  Harvesting relational tables from lists on the web , 2009, The VLDB Journal.

[16]  Maurice Bruynooghe,et al.  Information extraction from structured documents using k-testable tree automaton inference , 2006, Data Knowl. Eng..

[17]  Talel Abdessalem,et al.  Automatic Extraction of Structured Web Data with Domain Knowledge , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[18]  Vijay V. Raghavan,et al.  Fully automatic wrapper generation for search engines , 2005, WWW '05.

[19]  Georg Gottlob,et al.  Visual Web Information Extraction with Lixto , 2001, VLDB.

[20]  Bing Liu,et al.  A Generalized Tree Matching Algorithm Considering Nested Lists for Web Data Extraction , 2010, SDM.

[21]  Hector Garcia-Molina,et al.  Semistructured Data: The Tsimmis Experience , 1997, ADBIS.

[22]  Daisy Zhe Wang,et al.  WebTables: exploring the power of tables on the web , 2008, Proc. VLDB Endow..

[23]  Hector Garcia-Molina,et al.  Extracting structured data from Web pages , 2003, SIGMOD '03.

[24]  Weifeng Su,et al.  ODE: Ontology-assisted data extraction , 2009, TODS.

[25]  Dayne Freitag,et al.  Machine Learning for Information Extraction in Informal Domains , 2000, Machine Learning.

[26]  Khaled Shaalan,et al.  FiVaTech: Page-Level Web Data Extraction from Template Pages , 2007 .

[27]  Weiyi Meng,et al.  Vision-based Web Data Records Extraction , 2006, WebDB.

[28]  Khaled Shaalan,et al.  A Survey of Web Information Extraction Systems , 2006, IEEE Transactions on Knowledge and Data Engineering.

[29]  Chun-Nan Hsu,et al.  Generating Finite-State Transducers for Semi-Structured Data Extraction from the Web , 1998, Inf. Syst..

[30]  Kalina Bontcheva,et al.  Text Processing with GATE , 2011 .

[31]  Nilesh N. Dalvi,et al.  Robust web extraction: an approach based on a probabilistic tree-edit model , 2009, SIGMOD Conference.

[32]  Robert L. Grossman,et al.  Mining data records in Web pages , 2003, KDD '03.

[33]  Georg Lausen,et al.  ViPER: augmenting automatic information extraction with visual perceptions , 2005, CIKM '05.

[34]  Wolfgang Gatterbauer,et al.  Towards domain-independent information extraction from web tables , 2007, WWW '07.

[35]  Alon Y. Halevy Structured Data on the Web , 2009, NGITS.

[36]  Tim Furche,et al.  Little Knowledge Rules the Web: Domain-Centric Result Page Extraction , 2011, RR.

[37]  Valter Crescenzi,et al.  RoadRunner: automatic data extraction from data-intensive web sites , 2002, SIGMOD '02.

[38]  Valter Crescenzi,et al.  Minimizing the Costs of the Training Data for Learning Web Wrappers , 2012, VLDS.

[39]  Jian Pei,et al.  Can we learn a template-independent wrapper for news article extraction from a single training site? , 2009, KDD.