Idempotent uninorms on Finite Ordinal Scales

In this paper we characterize all idempotent uninorms defined on a finite ordinal scale. It is proved that any such discrete idempotent uninorm is uniquely determined by a decreasing function from the set of scale elements not greater than the neutral element to the set of scale elements not smaller than the neutral element, and vice versa. Based on this one-to-one correspondence, the total number of discrete idempotent uninorms on a finite ordinal scale of n + 1 elements is equal to 2n.

[1]  János C. Fodor,et al.  Smooth associative operations on finite ordinal scales , 2000, IEEE Trans. Fuzzy Syst..

[2]  Pawel Drygas,et al.  Discussion of the structure of uninorms , 2005, Kybernetika.

[3]  Ronald R. Yager,et al.  Uninorm aggregation operators , 1996, Fuzzy Sets Syst..

[4]  Joan Torrens,et al.  On bisymmetric operators on a finite chain , 2003, IEEE Trans. Fuzzy Syst..

[5]  E. Czogala,et al.  Associative monotonic operations in fuzzy set theory , 1984 .

[6]  B. Baets,et al.  Orthosymmetrical monotone functions , 2007 .

[7]  Joan Torrens,et al.  On locally internal monotonic operations , 2003, Fuzzy Sets Syst..

[8]  Joan Torrens,et al.  On left and right uninorms on a finite chain , 2004, EUSFLAT Conf..

[9]  Joan Torrens,et al.  Copula-like operations on finite settings , 2005, IEEE Transactions on Fuzzy Systems.

[10]  B. Baets,et al.  Discrete Triangular Norms , 2003 .

[11]  Joan Torrens,et al.  On a class of operators for expert systems , 1993, Int. J. Intell. Syst..

[12]  G. Mayor,et al.  t‐Operators and uninorms on a finite totally ordered set , 1999 .

[13]  G. Mayor,et al.  Triangular norms on discrete settings , 2005 .

[14]  Radko Mesiar,et al.  Triangular norms on product lattices , 1999, Fuzzy Sets Syst..