Catalysis for Alternative Energy Generation

General overview.- Hydrogen energy by environmetally friendly fuels.- Hydrogen production.- Utilization of biomass.- Utilization of biogas and methane dry reforming.- Ethanol reforming .- Methanol reforming.- Biodiesel.- Catalysis beyond biodiesel including fine chemistry.- Low Temperature methane combustion.- Reaction in Membranes and Catalysts.- PEMFC.- DMFC.- Photocatalysis and solar cells.- Direct utilization of solar energy.- Concluding remarks and future perspectives.

[1]  Fabrizio Cavani,et al.  Hydrotalcite-type anionic clays: Preparation, properties and applications. , 1991 .

[2]  Martyn V. Twigg,et al.  Deactivation of Copper Metal Catalysts for Methanol Decomposition, Methanol Steam Reforming and Methanol Synthesis , 2003 .

[3]  R. Schlögl,et al.  A new approach to well-defined, stable and site-isolated catalysts , 2007 .

[4]  M. Schmidt,et al.  Refinement of the crystal structure of dipalladium gallium, Pd2Ga , 2008 .

[5]  R. Kikuchi,et al.  Nano-structural changes of SnO2-supported palladium catalysts by redox treatments , 2010 .

[6]  Rufino M. Navarro,et al.  Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3 , 2003 .

[7]  N. Iwasa,et al.  Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals , 1997 .

[8]  Yogesh V. Joshi,et al.  Effect of Zn addition on the water-gas shift reaction over supported palladium catalysts , 2008 .

[9]  R. Schlögl,et al.  In situ Surface Characterization of the Intermetallic Compound PdGa – A Highly Selective Hydrogenation Catalyst , 2009 .

[10]  K. Kunimori,et al.  Comparative study between Zn–Pd/C and Pd/ZnO catalysts for steam reforming of methanol , 2004 .

[11]  F. Pinzari,et al.  An IR study of methanol steam reforming over ex-hydrotalcite Cu–Zn–Al catalysts , 2007 .

[12]  J. E. Pemberton,et al.  XPS Characterization of a Commercial Cu/ZnO/Al2O3 Catalyst: Effects of Oxidation, Reduction, and the Steam Reformation of Methanol , 1988 .

[13]  G. Busca,et al.  Production of hydrogen from oxidative steam reforming of methanol: I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor , 2004 .

[14]  J. Hansen,et al.  13.13 Methanol Synthesis , 2008 .

[15]  N. Takezawa,et al.  Highly active copper catalysts for steam reforming of methanol. Catalysts derived from Cu/Zn/Al alloys , 1994 .

[16]  M. S. Spencer,et al.  On the activation energies of the forward and reverse water-gas shift reaction , 1995 .

[17]  N. Iwasa,et al.  Steam Reforming of Methanol Over Pd-Zn Catalysts , 2000 .

[18]  S. J. Tauster Strong metal-support interactions , 1986 .

[19]  R. Schlögl The role of chemistry in the energy challenge. , 2010, ChemSusChem.

[20]  Konstantin M. Neyman,et al.  Electronic properties of thin Zn layers on Pd(1 1 1) during growth and alloying , 2006 .

[21]  J. Konzett,et al.  Origin of different deactivation of Pd/SnO2 and Pd/GeO2 catalysts in methanol dehydrogenation and reforming: A comparative study , 2010 .

[22]  Brown,et al.  Deactivation of catalysts in biomass gasification , 1986 .

[23]  Kenzi Suzuki,et al.  Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts for the Selective Production of Hydrogen for Fuel Cells: Catalyst Characterization and Performance Evaluation , 2000 .

[24]  E. Taglauer,et al.  Spreading and Wetting , 2008 .

[25]  Kazuo Uematsu,et al.  Hydrogen production by oxidative methanol reforming on Pd/ZnO , 2005 .

[26]  Yanyong Liu,et al.  Production of hydrogen by steam reforming of methanol over Cu/CeO2 catalysts derived from Ce1−xCuxO2−x precursors , 2001 .

[27]  Kangnian Fan,et al.  A highly efficient Cu/ZnO/Al2O3 catalyst via gel-coprecipitation of oxalate precursors for low-temperature steam reforming of methanol , 2005 .

[28]  Kangnian Fan,et al.  A unique microwave effect on the microstructural modification of Cu/ZnO/Al2O3 catalysts for steam reforming of methanol. , 2005, Chemical communications.

[29]  R. Schlögl,et al.  The Potential of Microstructural Optimization in Metal/Oxide Catalysts: Higher Intrinsic Activity of Copper by Partial Embedding of Copper Nanoparticles , 2010 .

[30]  S. C. Fung,et al.  Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide , 1978 .

[31]  A. K. Tyagi,et al.  Rietveld refinement study of nanocrystalline copper doped zirconia , 2003 .

[32]  Yong Wang,et al.  The Effects of PdZn Crystallite Size on Methanol Steam Reforming , 2007 .

[33]  Kouichi Miura,et al.  High porous carbon with Cu/ZnO nanoparticles made by the pyrolysis of carbon material as a catalyst for steam reforming of methanol and dimethyl ether , 2010 .

[34]  Lars J. Pettersson,et al.  Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications , 2001 .

[35]  T. Asakawa,et al.  Steam reforming of methanol over Cu/ZrO2. Role of ZrO2 support , 1987 .

[36]  S. Fujita,et al.  Steam reforming of methanol on binary CuZnO catalysts: Effects of preparation condition upon precursors, surface structure and catalytic activity , 1997 .

[37]  Kangnian Fan,et al.  The Role of the Promoters in Cu Based Catalysts for Methanol Steam Reforming , 2009 .

[38]  D. Su,et al.  Platinum nanocrystals supported by silica, alumina and ceria: metal-support interaction due to high-temperature reduction in hydrogen , 2003 .

[39]  Kenzi Suzuki,et al.  Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts , 2001 .

[40]  Robert Schlögl,et al.  Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al(2)O(3) catalysts for methanol synthesis. , 2007, Angewandte Chemie.

[41]  Jens R. Rostrup-Nielsen Conversion of hydrocarbons and alcohols for fuel cells , 2001 .

[42]  Y. Matsumura,et al.  High temperature steam reforming of methanol over Cu/ZnO/ZrO2 catalysts , 2009 .

[43]  T. Ressler,et al.  Effect of Precipitate Ageing on the Microstructural Characteristics of Cu/ZnO Catalysts for Methanol Steam Reforming , 2005 .

[44]  M. Muhler,et al.  The back-titration of chemisorbed atomic oxygen on copper by carbon monoxide investigated by microcalorimetry and transient kinetics , 2008 .

[45]  Y. Matsumura,et al.  Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts , 2005 .

[46]  N. Iwasa,et al.  New Supported Pd and Pt Alloy Catalysts for Steam Reforming and Dehydrogenation of Methanol , 2003 .

[47]  Di Wang,et al.  Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects , 2009 .

[48]  G. Bagnasco,et al.  Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix , 2007 .

[49]  T. Ressler,et al.  In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol , 2005 .

[50]  M. S. Spencer,et al.  The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water–gas shift reaction , 1999 .

[51]  H. Morioka,et al.  Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol , 2004 .

[52]  Jian Li,et al.  Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures , 1996 .

[53]  F. Pinzari,et al.  Methanol steam reforming over ex-hydrotalcite Cu–Zn–Al catalysts , 2006 .

[54]  R. Schlögl,et al.  Rational design of nanostructured copper-zinc oxide catalysts for the steam reforming of methanol. , 2004, Angewandte Chemie.

[55]  S. Velu,et al.  Selective Production of Hydrogen for Fuel Cells Via Oxidative Steam Reforming of Methanol Over CuZnAl Oxide Catalysts: Effect of Substitution of Zirconium and Cerium on the Catalytic Performance , 2003 .

[56]  Konstantin M. Neyman,et al.  Theoretical study of segregation of Zn and Pd in Pd–Zn alloys , 2004 .

[57]  J. Bokhoven,et al.  Particle Size Effect of Hydride Formation and Surface Hydrogen Adsorption of Nanosized Palladium Catalysts: L3 Edge vs K Edge X-ray Absorption Spectroscopy , 2009 .

[58]  R. Schlögl,et al.  Strained thin copper films as model catalysts in the materials gap , 2005 .

[59]  J. A. Christiansen A REACTION BEWEEN METHYL ALCOHOL AND WATER AND SOME RELATED REACTIONS. , 1921 .

[60]  F. Schüth,et al.  Precipitation and Coprecipitation , 2008 .

[61]  J. Grunwaldt,et al.  In Situ Investigations of Structural Changes in Cu/ZnO Catalysts , 2000 .

[62]  Jens K. Nørskov,et al.  Electronic factors determining the reactivity of metal surfaces , 1995 .

[63]  R. Schlögl,et al.  Subsurface-controlled CO2 selectivity of PdZn near-surface alloys in H2 generation by methanol steam reforming. , 2010, Angewandte Chemie.

[64]  T. Ressler,et al.  Redox Behavior of Copper Oxide /Zinc Oxide Catalysts in the Steam Reforming of Methanol studied by in situ X-ray Diffraction and Absorption Spectroscopy , 2001 .

[65]  M. Kohout Bonding indicators from electron pair density functionals. , 2007, Faraday discussions.

[66]  J. Frost Junction effect interactions in methanol synthesis catalysts , 1988, Nature.

[67]  A. Inoue,et al.  Preparation of Highly Active Methanol Steam Reforming Catalysts from Glassy Cu-Zr Alloys with Small Amount of Noble Metals , 2006 .

[68]  A. Gross,et al.  Dissociative adsorption of hydrogen on strained Cu surfaces , 2003 .

[69]  M. Muhler,et al.  New Synthetic Routes to More Active Cu/ZnO Catalysts Used for Methanol Synthesis , 2004 .

[70]  S. Fujita,et al.  Mechanism of the formation of precursors for the Cu/ZnO methanol synthesis catalysts by a coprecipitation method , 1995 .

[71]  Henrik Birgersson,et al.  Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst : a kinetic analysis and strategies for suppression of CO formation , 2002 .

[72]  T. Tanabe,et al.  Al–Cu–Fe quasicrystals for steam reforming of methanol: a new form of copper catalysts , 2004 .

[73]  Axel Knop-Gericke,et al.  The Roles of Subsurface Carbon and Hydrogen in Palladium-Catalyzed Alkyne Hydrogenation , 2008, Science.

[74]  A. Wokaun,et al.  Structural changes of model Cu/ZnO catalysts during exposure to methanol reforming conditions , 2003 .

[75]  Satoshi Masuda,et al.  Highly selective supported Pd catalysts for steam reforming of methanol , 1993 .

[76]  R. Schlögl,et al.  Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates. , 2003, Chemistry.

[77]  Y. Matsumura,et al.  Suppression of CO by-production in steam reforming of methanol by addition of zinc oxide to silica-supported copper catalyst , 2009 .

[78]  Y. Matsumura,et al.  Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts , 2005 .

[79]  Evan O. Jones,et al.  Development of Highly Active Pd‐ZnO/Al2O3 Catalysts for Microscale Fuel Processor Applications , 2005 .

[80]  Kangnian Fan,et al.  Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts , 2006 .

[81]  R. Schlögl,et al.  Palladium–gallium intermetallic compounds for the selective hydrogenation of acetylene: Part I: Preparation and structural investigation under reaction conditions , 2008 .

[82]  G. Millar,et al.  Characterization of precursors to methanol synthesis catalysts Cu/ZnO system , 1998 .

[83]  Jens R. Rostrup-Nielsen,et al.  Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals , 2002, Science.

[84]  K. Uematsu,et al.  Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component , 2004 .

[85]  R. Schlögl,et al.  Zn adsorption on Pd(111): ZnO and PdZn alloy formation. , 2006, The journal of physical chemistry. B.

[86]  Hiroshi Kitagawa,et al.  Nanosize Effects on Hydrogen Storage in Palladium , 2008 .

[87]  Satoshi Hamakawa,et al.  Steam Reforming of Methanol Over Cu/CeO2 Catalysts Studied in Comparison with Cu/ZnO and Cu/Zn(Al)O Catalysts , 2003 .

[88]  R. Schlögl,et al.  Understanding the complexity of a catalyst synthesis: Co-precipitation of mixed Cu,Zn,Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments , 2011 .

[89]  R. Schlögl,et al.  Temperature-Induced Modifications of PdZn Layers on Pd(111) , 2010 .

[90]  Shetian Liu,et al.  Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of Pd loading , 2003 .

[91]  N. Iwasa,et al.  Steam reforming of methanol over Pd/ZnO: Effect of the formation of PdZn alloys upon the reaction , 1995 .

[92]  Rufino M. Navarro,et al.  Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass , 2007 .

[93]  A. Datye,et al.  Interaction of CO with Surface PdZn Alloys , 2007 .

[94]  J. Fierro,et al.  Selective Production of Hydrogen by Partial Oxidation of Methanol over ZnO-Supported Palladium Catalysts , 1998 .

[95]  M. Behrens,et al.  Structural Effects of Cu/Zn Substitution in the Malachite–Rosasite System , 2010 .

[96]  M. Muhler,et al.  The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. , 2008, Physical chemistry chemical physics : PCCP.

[97]  J. Fierro,et al.  Partial oxidation of methanol over supported palladium catalysts , 1998 .

[98]  N. Ouaini,et al.  Investigation of changes in crystal and electronic structures by hydrogen within LaNi5 from first-principles , 2009 .

[99]  P. Liao,et al.  Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol , 2007 .

[100]  G. Busca,et al.  Cu–Zn–Al hydrotalcites as precursors of catalysts for the production of hydrogen from methanol , 2005 .

[101]  K. C. Waugh,et al.  The measurement of copper surface areas by reactive frontal chromatography , 1987 .

[102]  A. Tsai,et al.  PdZn=Cu: Can an Intermetallic Compound Replace an Element? , 2004 .

[103]  Konstantin M. Neyman,et al.  Density functional study of methoxide decomposition on PdZn(100) , 2004 .

[104]  L. Braicovich,et al.  Photoemission evidence of surface segregation at liquid-nitrogen temperature in Zn-Pd system , 1982 .

[105]  R. Schlögl,et al.  Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts: a kinetic study , 2005 .

[106]  N. Iwasa,et al.  New catalytic functions of Pd–Zn, Pd–Ga, Pd–In, Pt–Zn, Pt–Ga and Pt–In alloys in the conversions of methanol , 1998 .

[107]  Georg Kresse,et al.  Carbon in palladium catalysts: A metastable carbide. , 2010, The Journal of chemical physics.

[108]  H. Imamura,et al.  INTERMETALLIC COMPOUNDS: SURFACE CHEMISTRY, HYDROGEN ABSORPTION AND HETEROGENEOUS CATALYSIS* , 1980 .

[109]  R. Schlögl,et al.  Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics , 2007 .

[110]  I. Bakó,et al.  A theoretical study of Zn adsorption and desorption on a Pd(111) substrate , 2010 .

[111]  O. Lebedev,et al.  Pd-In2O3 interaction due to reduction in hydrogen: Consequences for methanol steam reforming , 2010 .

[112]  Kazuo Uematsu,et al.  Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst deactivation , 2006 .

[113]  A. Tsai,et al.  Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol , 2001 .

[114]  Masahiko Arai,et al.  Hydrogen Production by Steam Reforming of Methanol , 2004 .

[115]  M. Saito R&D activities in Japan on methanol synthesis from CO2 and H2 , 1998 .

[116]  M. Muhler,et al.  Chemisorption of N2O and H2 for the Surface Determination of Copper Catalysts , 2000 .

[117]  Di Wang,et al.  Rh and Pt nanoparticles supported by CeO2: Metal–support interaction upon high-temperature reduction observed by electron microscopy , 2004 .

[118]  R. Schlögl,et al.  Understanding palladium hydrogenation catalysts: when the nature of the reactive molecule controls the nature of the catalyst active phase. , 2008, Angewandte Chemie.

[119]  George A. Olah,et al.  Beyond Oil and Gas: The Methanol Economy , 2005 .

[120]  F. Netzer,et al.  Growth and desorption kinetics of ultrathin Zn layers on Pd(111) , 2009 .

[121]  N. Iwasa,et al.  Steam reforming of methanol over Ni, Co, Pd and Pt supported on ZnO , 1995 .

[122]  Kamal K. Pant,et al.  H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: transient deactivation kinetics modeling , 2005 .

[123]  T. Hirano,et al.  Effects of steam addition on the spontaneous activation in Ni3Al foil catalysts during methanol decomposition , 2009 .

[124]  Konstantin M. Neyman,et al.  Effect of steps on the decomposition of CH3O at PdZn alloy surfaces. , 2005, The journal of physical chemistry. B.

[125]  J. Vohs,et al.  Zn modification of the reactivity of Pd(111) toward methanol and formaldehyde. , 2008, Journal of the American Chemical Society.

[126]  M. Muhler,et al.  The influence of strongly reducing conditions on strong metal-support interactions in Cu/ZnO catalysts used for methanol synthesis. , 2006, Physical chemistry chemical physics : PCCP.

[127]  J. Rodríguez Interactions in bimetallic bonding. Electronic and chemical properties of PdZn surfaces , 1994 .

[128]  M. Behrens Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts , 2009 .

[129]  R. Schlögl,et al.  Microstructural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reforming—A comparative study , 2008 .

[130]  Robert Schlögl,et al.  Palladium Gallium Intermetallic Compounds for the Selective Hydrogenation of Acetylene Part II: Surface Characterization and Catalytic Performance , 2008 .

[131]  Thompson,et al.  Narrowing of the palladium-hydrogen miscibility gap in nanocrystalline palladium. , 1993, Physical review. B, Condensed matter.

[132]  R. Idem,et al.  Characterization studies of calcined, promoted and non-promoted methanol-steam reforming catalysts , 1996 .

[133]  Di Wang,et al.  Growth and structural stability of well-ordered PdZn alloy nanoparticles , 2006 .

[134]  P. L. Lee,et al.  Time-Resolved XANES Investigation of CuO/ZnO in the Oxidative Methanol Reforming Reaction , 2001 .

[135]  S. Fujita,et al.  Preparation of precursors for the Cu/ZnO methanol synthesis catalysts by coprecipitation methods: Effects of the preparation conditions upon the structures of the precursors , 1992 .

[136]  H. Yoshida,et al.  XPS, XANES and EXAFS investigations of CuO/ZnO/Al2O3/ZrO2 mixed oxide catalysts , 2002 .

[137]  Dong Hyun Kim,et al.  Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor , 2004 .

[138]  M. Prigent ON BOARD HYDROGEN GENERATION FOR FUEL CELL POWERED ELECTRIC CARS A REVIEW OF VARIOUS AVAILABLE TECHNIQUES , 1997 .

[139]  Hyun-Yong Lee,et al.  Recent progress in selective CO removal in a H2-rich stream , 2009 .

[140]  S. Penner,et al.  Growth, thermal stability and structure of ultrathin Zn-layers on Pd(1 1 1) , 2009, Surface science.

[141]  Robert A Dagle,et al.  Methanol steam reforming for hydrogen production. , 2007, Chemical reviews.

[142]  R. Schlögl,et al.  Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis , 2001 .

[143]  F. Schüth,et al.  Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis , 2008 .

[144]  S. Kühl,et al.  Phase-pure Cu,Zn,Al Hydrotalcite-like Materials as Precursors for Copper rich Cu/ZnO/Al2O3 Catalysts , 2010 .

[145]  Y. Matsumura,et al.  Selective steam reforming of methanol over silica-supported copper catalyst prepared by sol–gel method , 2009 .

[146]  G. Germani,et al.  Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique , 2003 .

[147]  D. Stirling,et al.  Copper–zinc oxide catalysts. Activity in relation to precursor structure and morphology , 1989 .

[148]  Yong Wang,et al.  Review of developments in portable hydrogen production using microreactor technology. , 2004, Chemical reviews.

[149]  R. Lavecchia,et al.  Study of the reducibility of copper in CuOZnO catalysts by temperature-programmed reduction , 1996 .

[150]  R. Schlögl,et al.  Activity and Selectivity of a Nanostructured CuO/ZrO2 Catalyst in the Steam Reforming of Methanol , 2004 .

[151]  M. Yamada,et al.  Optimization of Cu oxide catalyst for methanol synthesis under high CO2 partial pressure using combinatorial tools , 2004 .

[152]  Michael P. Harold,et al.  Autothermal reforming of methanol: Experiments and modeling , 2007 .

[153]  J. Pintado,et al.  Some contributions of electron microscopy to the characterisation of the strong metal-support interaction effect , 2003 .

[154]  A. Wokaun,et al.  Hydrogen production by methanol reforming: post-reaction characterisation of a Cu/ZnO/Al2O3 catalyst by XPS and TPD , 2002 .

[155]  M. Armbrüster,et al.  PdZn or ZnPd: Charge Transfer and Pd–Pd Bonding as the Driving Force for the Tetragonal Distortion of the Cubic Crystal Structure , 2010 .

[156]  G. Busca,et al.  Hydrogen from alcohols: IR and flow reactor studies , 2009 .

[157]  Miroslav Kohout,et al.  A Measure of Electron Localizability , 2004 .

[158]  Caine M. Finnerty,et al.  REFORMING CATALYSTS FOR HYDROGEN GENERATION IN FUEL CELL APPLICATIONS , 2006 .

[159]  Tetsuya Shishido,et al.  Preparation of supported metal catalysts starting from hydrotalcites as the precursors and their improvements by adopting “memory effect” , 2007 .

[160]  S. Velu,et al.  Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts; a new and efficient method for the production of CO-free hydrogen for fuel cells , 1999 .

[161]  R. M. Lambert,et al.  An in situ X-ray diffraction study of the activation and performance of methanol synthesis catalysts derived from rare earth-copper alloys , 1987 .

[162]  Kangnian Fan,et al.  Structural Evolution and Catalytic Properties of Nanostructured Cu/ZrO2 Catalysts Prepared by Oxalate Gel-Coprecipitation Technique , 2007 .

[163]  G. I. Lin,et al.  Fundamentals of Methanol Synthesis and Decomposition , 2003 .

[164]  H. Morioka,et al.  Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation : Steam reforming and oxidative steam reforming , 2007 .

[165]  J. Grunwaldt,et al.  Decreased CO production in methanol steam reforming over Cu/ZrO2 catalysts prepared by the microemulsion technique , 2006 .

[166]  K. Kunimori,et al.  Steam reforming of methanol over Pt–Zn alloy catalyst supported on carbon black , 2003 .

[167]  A. Datye,et al.  The role of PdZn alloy formation and particle size on the selectivity for steam reforming of methanol , 2006 .

[168]  T. Tanabe,et al.  A novel catalyst fabricated from Al-Cu-Fe quasicrystal for steam reforming of methanol , 2006 .

[169]  P. G. Menon,et al.  Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles , 2002 .

[170]  J. C. Amphlett,et al.  Deactivation of Cu/ZnO/Al2O3 Catalyst: Evolution of Site Concentrations with Time , 2003 .

[171]  D. Löffler,et al.  Activity and durability of water-gas shift catalysts used for the steam reforming of methanol , 2003 .

[172]  R. Schlögl,et al.  Minerals as model compounds for Cu/ZnO catalyst precursors: Structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture , 2009 .

[173]  R. Schlögl,et al.  Characterisation of active phases of a copper catalyst for methanol oxidation under reaction conditions: an in situ X-ray absorption spectroscopy study in the soft energy range , 2001 .

[174]  M. Muhler,et al.  The Synthesis of Highly Loaded Cu/Al2O3 and Cu/ZnO/Al2O3 Catalysts by the Two‐Step CVD of CuIIdiethylamino‐2‐propoxide in a Fluidized‐Bed Reactor , 2010 .

[175]  Adélio Mendes,et al.  Catalysts for methanol steam reforming—A review , 2010 .

[176]  T. Kai,et al.  Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys , 2001 .

[177]  K. Uematsu,et al.  Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials , 2007 .

[178]  B. Gong,et al.  Cr2O3 promoted skeletal Cu catalysts for the reactions of methanol steam reforming and water gas shift , 2000 .

[179]  M. Kumagai,et al.  Highly active copper/ceria catalysts for steam reforming of methanol , 2002 .

[180]  G. Capannelli,et al.  Oxidative methanol steam reforming (OSRM) on a PdZnAl hydrotalcite derived catalyst , 2007 .

[181]  C. Bauer,et al.  Low temperature resistivity of thin film and bulk samples of CuAl2 and Cu9Al4 , 1981 .

[182]  A. Tsai,et al.  Quasicrystal application on catalyst , 2002 .

[183]  Y. Grin,et al.  Atomic Shells From the Electron Localizability in Momentum Space , 2006 .

[184]  Konstantin M. Neyman,et al.  Surface structure and stability of PdZn and PtZn alloys: Density-functional slab model studies , 2003 .

[185]  A. Datye,et al.  The effect of PdZn particle size on reverse-water–gas-shift reaction , 2010 .

[186]  Konstantin M. Neyman,et al.  Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces. , 2006, The journal of physical chemistry. B.

[187]  Kangnian Fan,et al.  Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dry oxalate-precursor synthesis , 2007 .

[188]  Ta-Jen Huang,et al.  Hydrogen production via steam reforming of methanol over Cu/(Ce,Gd)O2−x catalysts , 2010 .

[189]  P. Zhu,et al.  High‐performance HTLcs‐derived CuZnAl catalysts for hydrogen production via methanol steam reforming , 2009 .

[190]  Mark S. Wainwright,et al.  KINETIC MECHANISM FOR THE REACTION BETWEEN METHANOL AND WATER OVER A CU-ZNO-AL2O3 CATALYST , 1993 .

[191]  C. Lund,et al.  A study of the nickel-titanium oxide interaction , 1984 .