Dielectric Electrode Surface Effects on Atmospheric Pressure Glow Discharges in Helium

Comparative experimental and theoretical studies are carried with 0.5-mm gaps using metallic and dielectric electrodes to examine the influence of dielectric surfaces upon the behavior of atmospheric pressure glow discharges in helium at frequencies of up to 22 kHz. The charge transfers associated with the discrete discharge current pulses exhibit a direct proportionality to the difference between the breakdown Vb and residual Vr voltages. The introduction of dielectric surfaced electrodes markedly increases the magnitude of Vr, which leads to substantially lower discharge currents. The calculated ionic and electronic charge carrier components comprising the discharge current pulses were found to be approximately equal when both electrodes were either metallic or dielectric. With one electrode metallic and the counter electrode dielectric, the electronic charge carrier component magnitude exceeded that of the ionic one by a factor of 2 in the positive half cycle.

[1]  M. Steenbeck,et al.  Über die Glimmentladung bei hohen Drucken , 1933 .

[2]  T. C. Manley The Electric Characteristics of the Ozonator Discharge , 1943 .

[3]  A. M. Thomas "Heat developed" and "powder" Lichtenberg figures and the ionization of dielectric surfaces produced by electrical impulses , 1951 .

[4]  J. Meek,et al.  Electrical breakdown of gases , 1953 .

[5]  H. C. Hall,et al.  Discharge Inception and Extinction in Dielectric Voids , 1954 .

[6]  T. Dakin,et al.  Corona Measurement and Interpretation , 1957, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems.

[7]  The measurement and influence of surface charges on the inception voltage between dielectric and metal dielectric surfaces , 1960 .

[8]  K. Katsuura Ionization of Atoms by Collision with Excited Atoms , 1965 .

[9]  F. L. Jones,et al.  Ionization in helium at high pressures , 1965 .

[10]  R Bartnikas,et al.  Note on discharges in helium under a.c. conditions , 1968 .

[11]  R. Bartnikas,et al.  Note on ac Discharges between Metallic‐Dielectric Electrodes in Helium , 1969 .

[12]  D. L. Bitzer,et al.  The device characteristics of the plasma display element , 1971 .

[13]  R. Bartnikas,et al.  Some Observations on the Character of Corona Discharges in Short Gap Spaces , 1971, IEEE Transactions on Electrical Insulation.

[14]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[15]  V. Dose,et al.  Electron production by metastable rare gas atom impact on a molybdenum (110) surface , 1976 .

[16]  L. Weber Measurement of wall charge and capacitance variation for a single cell in the AC plasma display panel , 1977, IEEE Transactions on Electron Devices.

[17]  R. Bartnikas,et al.  Corona measurement and interpretation , 1979 .

[18]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[19]  R. Martin,et al.  Velocity dependence for the chemi‐ionization of Ar, Kr, N2, CO, and O2 by He(2 1S) and He(2 3S) metastable atoms , 1982 .

[20]  Velocity dependence for the chemi-ionization of Ar, Kr, N/sub 2/, CO, and O/sub 2/ by He(2 /sup 1/S) and He(2 /sup 3/S) metastable atoms , 1982 .

[21]  Secondary electron emission from dielectrics , 1985 .

[22]  P. Jerram,et al.  Absolute total chemi-ionisation cross sections for collisions of He(23S) atoms with rare-gas atoms and simple molecules , 1985 .

[23]  R. Bartnikas,et al.  Breakdown model of a short plane‐parallel gap , 1987 .

[24]  R. Bartnikas,et al.  Early stages of channel formation in a short‐gap breakdown , 1988 .

[25]  Discharge voltage of dielectric gaps and the generalized secondary ionization coefficient gamma of the dielectric cathode , 1988, Proceedings., Second International Conference on Properties and Applications of Dielectric Materials.

[26]  R. Bartnikas,et al.  Density profiles, electric field and energy dissipation in a short gap breakdown: a two-dimensional model , 1988 .

[27]  Claus-Dieter Munz,et al.  On the numerical dissipation of high resolution schemes for hyperbolic conservation laws , 1988 .

[28]  M. Kogoma,et al.  The mechanism of the stabilisation of glow plasma at atmospheric pressure , 1990 .

[29]  B. Eliasson,et al.  Modeling and applications of silent discharge plasmas , 1991 .

[30]  R. Bartnikas,et al.  Theoretical and experimental investigations on the process of high-pressure discharge development , 1991 .

[31]  R. Bartnikas,et al.  On the spark to pseudoglow and glow transition mechanism and discharge detectability , 1992 .

[32]  R. Bartnikas,et al.  Effect of air admixture in helium on the rate of the breakdown current rise , 1992 .

[33]  Masuhiro Kogoma,et al.  Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure , 1994 .

[34]  J. Reece Roth,et al.  Industrial Plasma Engineering : Volume 1: Principles , 1995 .

[35]  M. Kushner,et al.  Reaction chemistry and optimization of plasma remediation of NxOy from gas streams , 1995 .

[36]  R. Bartnikas,et al.  Effect of overvoltage on the risetime and amplitude of PD pulses , 1995 .

[37]  J. Roth Industrial Plasma Engineering , 1995 .

[38]  K. Hashimoto,et al.  The reduction of copper oxide thin films with hydrogen plasma generated by an atmospheric-pressure glow discharge , 1996 .

[39]  C. Mayoux,et al.  Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier , 1998 .

[40]  F. Tochikubo,et al.  Structure of Low-Frequency Helium Glow Discharge at Atmospheric Pressure between Parallel Plate Dielectric Electrodes , 1999 .

[41]  Ulrich Kogelschatz,et al.  From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges , 1999 .

[42]  R. Bartnikas,et al.  Effect of dielectric surfaces on the nature of partial discharges , 2000 .

[43]  Erich E. Kunhardt,et al.  Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas , 2000 .

[44]  J. Roth,et al.  An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials , 2000 .

[45]  R. Bartnikas,et al.  Electrical and Optical Diagnostics of Dielectric Barrier Discharges (DBD) in He and N2 for Polymer Treatment , 2000 .

[46]  R. Bartnikas,et al.  The influence of dielectric surface charge distribution upon the partial discharge behavior in short air gaps , 2001 .

[47]  J Reece Roth,et al.  Industrial Plasma Engineering: Volume 2: Applications to Nonthermal Plasma Processing , 2001 .

[48]  R. Bartnikas,et al.  Surface charge and photoionization effects in short air gaps undergoing discharges at atmospheric pressure , 2001 .

[49]  U. Kogelschatz,et al.  Filamentary, patterned, and diffuse barrier discharges , 2002 .

[50]  T. Nozaki,et al.  Carbon nanotubes deposition in glow barrier discharge enhanced catalytic CVD , 2002 .

[51]  Electron emission yield from thin Al and insulating layers induced by 3 MeV He2+ and 3 keV electron impact , 2002 .

[52]  N. Gherardi,et al.  Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modelling , 2003 .

[53]  Jean-Pierre Boeuf,et al.  Large-gap AC coplanar plasma display cells: macro-cell experiments and 3-D simulations , 2003 .

[54]  R. Bartnikas,et al.  Diagnostics of dielectric barrier discharges in noble gases: atmospheric pressure glow and pseudoglow discharges and spatio-temporal patterns , 2003 .

[55]  R. Bartnikas,et al.  Frequency and voltage dependence of glow and pseudoglow discharges in helium under atmospheric pressure , 2003 .

[56]  J. Behnke,et al.  Modelling of the homogeneous barrier discharge in helium at atmospheric pressure , 2003 .

[57]  R. Bartnikas,et al.  Dielectric barrier discharges in helium at atmospheric pressure: experiments and model in the needle-plane geometry , 2003 .

[58]  R. Bartnikas,et al.  Positive and negative polarity current pulse characteristics of a helium glow discharge in a cylinder-plane electrode gap at atmospheric pressure , 2004 .

[59]  U. Kortshagen,et al.  Effects of current limitation through the dielectric in atmospheric pressure glows in helium , 2004 .

[60]  R. Bartnikas,et al.  Dielectric barrier discharges in atmospheric pressure helium in cylinder-plane geometry: experiments and model , 2004 .

[61]  Xin Dai,et al.  The physics and phenomenology of One Atmosphere Uniform Glow Discharge Plasma (OAUGDP™) reactors for surface treatment applications , 2005 .

[62]  R. Bartnikas,et al.  Diagnostics and modelling of noble gas atmospheric pressure dielectric barrier discharges in homogeneous or diverging electric fields , 2005 .

[63]  R. Bartnikas,et al.  Imaging of atmospheric pressure glow discharges in helium and argon , 2005, IEEE Transactions on Plasma Science.

[64]  R. Bartnikas,et al.  A comment concerning the rise times of partial discharge pulses , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[65]  R. Bartnikas,et al.  Spectroscopic Diagnostics of Atmospheric Pressure Helium Dielectric Barrier Discharges in Divergent Fields , 2006 .