Sharp-crack limit of a phase-field model for brittle fracture

Abstract A matched asymptotic analysis is used to establish the correspondence between an appropriately scaled version of the governing equations of a phase-field model for fracture and the equations of the two-dimensional sharp-crack theory of Gurtin and Podio-Guidugli (1996) that arise on assuming that the bulk constitutive behavior is nonlinearly elastic, requiring that surface energy provides the only factor limiting crack propagation, and assuming that the fracture kinetics are isotropic. Consistent with the prominence of the configurational momentum balance at the crack tip in the latter theory, the approach capitalizes on the configurational momentum balance that arises naturally in the context of the phase-field model. The model developed and utilized here incorporates irreversibility of the phase-field evolution. This is achieved by introducing a suitable constraint and by carefully heeding the influence of that constraint on the kinetics underlying microstructural changes associated with fracture. The analysis is predicated on the assumption that the phase-field variable takes values in the closed interval between zero and unity.

[1]  On a continuum theory of brittle materials with microstructure , 2004 .

[2]  Alain Karma,et al.  Unsteady crack motion and branching in a phase-field model of brittle fracture. , 2004, Physical Review Letters.

[3]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[4]  Morton E. Gurtin,et al.  Continuum theory of thermally induced phase transitions based on an order parameter , 1993 .

[5]  Morton E. Gurtin,et al.  Configurational forces and the basic laws for crack propagation , 1996 .

[6]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[7]  Herbert Levine,et al.  Dynamic instabilities of fracture under biaxial strain using a phase field model. , 2004, Physical review letters.

[8]  A. Giacomini Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures , 2003, math/0303040.

[9]  Giovanni Lancioni,et al.  The Variational Approach to Fracture Mechanics. A Practical Application to the French Panthéon in Paris , 2009 .

[10]  G. D. Maso,et al.  Quasistatic Crack Growth in Nonlinear Elasticity , 2005 .

[11]  Morton E. Gurtin,et al.  A phase-field theory for solidification based on a general anisotropic sharp-interface theory with interfacial energy and entropy , 1996 .

[12]  Gianfranco Capriz,et al.  Continua with Microstructure , 1989 .

[13]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[14]  Aranson,et al.  Continuum field description of crack propagation , 2000, Physical review letters.

[15]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[16]  M. Gurtin,et al.  Configurational Forces as Basic Concepts of Continuum Physics , 1999 .

[17]  Jean Lemaitre,et al.  Local approach of fracture , 1986 .

[18]  Eliot Fried German Grach An Order-Parameter-Based Theory as a Regularization of a Sharp-Interface Theory for Solid-Solid Phase Transitions , 1997 .

[19]  T. Biben Phase-field models for free-boundary problems , 2005 .

[20]  M. Frémond,et al.  Damage, gradient of damage and principle of virtual power , 1996 .

[21]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[22]  Eliot Fried,et al.  On the Relationship between Supplemental Balances in Two Theories for Pure Interface Motion , 2006, SIAM J. Appl. Math..

[23]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[24]  Phase Field Theory of Nucleation and Polycrystalline Pattern Formation , 2007, cond-mat/0703676.

[25]  G. Piero,et al.  A variational model for fracture mechanics - Numerical experiments , 2007 .

[26]  Luigi Ambrosio,et al.  ON THE APPROXIMATION OF FREE DISCONTINUITY PROBLEMS , 1992 .

[27]  Rodica Toader,et al.  A Model for the Quasi-Static Growth¶of Brittle Fractures:¶Existence and Approximation Results , 2001 .

[28]  Héctor D. Ceniceros,et al.  Computation of multiphase systems with phase field models , 2002 .

[29]  R. Müller,et al.  A phase field model for fracture , 2008 .

[30]  Christopher J. Larsen,et al.  Existence and convergence for quasi‐static evolution in brittle fracture , 2003 .

[31]  G. I. Barenblatt,et al.  On brittle cracks under longitudinal shear , 1961 .

[32]  Yunzhi Wang,et al.  Phase field modeling of defects and deformation , 2010 .

[33]  Ralf Müller,et al.  A continuum phase field model for fracture , 2010 .

[34]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[35]  John R. Rice,et al.  Fracture of Brittle Solids (Cambridge Solid State Science Series) , 1975 .

[36]  W. Trąmpczyński,et al.  Creep rupture under non-proportional loading , 1980 .

[37]  Vincent Hakim,et al.  Laws of crack motion and phase-field models of fracture , 2008, 0806.0593.

[38]  I. Steinbach Phase-field models in materials science , 2009 .

[39]  E. Fried Correspondence between a phase-field theory and a sharp-interface theory for crystal growth , 1997 .

[40]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[41]  A. Clebsch,et al.  Theorie der Elasticität fester Körper , 1969 .

[42]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[43]  G. Francfort,et al.  Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case , 2009 .

[44]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[45]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[46]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[47]  F. P. Duda,et al.  A One-Dimensional Theory of Solute Diffusion and Degradation in Elastic Solids , 2009 .

[48]  A. Karma,et al.  Phase-field model of mode III dynamic fracture. , 2001, Physical review letters.

[49]  A. Karma,et al.  Phase field modeling of crack propagation , 2010, 1001.4350.

[50]  Andrea Braides Approximation of Free-Discontinuity Problems , 1998 .

[51]  B. Bourdin Numerical implementation of the variational formulation for quasi-static brittle fracture , 2007 .