Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling

This is an extensive overview of the core and special space–time and Arbitrary Lagrangian–Eulerian (ALE) techniques developed by the authors’ research teams for patient-specific cardiovascular fluid–structure interaction (FSI) modeling. The core techniques are the ALE-based variational multiscale (ALE-VMS) method, the Deforming-Spatial-Domain/Stabilized Space–Time formulation, and the stabilized space–time FSI technique. The special techniques include methods for calculating an estimated zero-pressure arterial geometry, prestressing of the blood vessel wall, a special mapping technique for specifying the velocity profile at an inflow boundary with non-circular shape, techniques for using variable arterial wall thickness, mesh generation techniques for building layers of refined fluid mechanics mesh near the arterial walls, a recipe for pre-FSI computations that improve the convergence of the FSI computations, the Sequentially-Coupled Arterial FSI technique and its multiscale versions, techniques for the projection of fluid–structure interface stresses, calculation of the wall shear stress and oscillatory shear index, arterial-surface extraction and boundary condition techniques, and a scaling technique for specifying a more realistic volumetric flow rate. With results from earlier computations, we show how these core and special FSI techniques work in patient-specific cardiovascular simulations.

[1]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics , 2007 .

[2]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[3]  Tayfun E. Tezduyar,et al.  Sequentially-Coupled Arterial Fluid-Structure Interaction (SCAFSI) technique , 2009 .

[4]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[5]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[6]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes , 2008 .

[7]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[8]  Thomas J. R. Hughes,et al.  Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to Atherosclerosis , 2004, Annals of Biomedical Engineering.

[9]  R Fumero,et al.  A numerical fluid mechanical study of repaired congenital heart defects. Application to the total cavopulmonary connection. , 1996, Journal of biomechanics.

[10]  Eugenio Oñate,et al.  Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid–structure interaction problems via the PFEM , 2008 .

[11]  E M Pedersen,et al.  Effects of Exercise and Respiration on Blood Flow in Total Cavopulmonary Connection: A Real-Time Magnetic Resonance Flow Study , 2003, Circulation.

[12]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of parachute clusters , 2011 .

[13]  Tayfun E. Tezduyar,et al.  Space-Time Computational Techniques for the Aerodynamics of Flapping Wings , 2012 .

[14]  Wolfgang A. Wall,et al.  3D fluid–structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach , 2010 .

[15]  Yuri Bazilevs,et al.  From imaging to prediction: Emerging non-invasive methods in pediatric cardiology , 2010 .

[16]  Tayfun E. Tezduyar,et al.  Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters , 2011 .

[17]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[18]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[19]  Tayfun E. Tezduyar,et al.  PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS WITH COMPLEX GEOMETRIES , 1997 .

[20]  Alessandro Giardini,et al.  Effect of sildenafil on haemodynamic response to exercise and exercise capacity in Fontan patients. , 2008, European heart journal.

[21]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[22]  Tayfun E. Tezduyar,et al.  TIME-ACCURATE INCOMPRESSIBLE FLOW COMPUTATIONS WITH QUADRILATERAL VELOCITY-PRESSURE ELEMENTS* , 1991 .

[23]  Tayfun E. Tezduyar,et al.  Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods , 2008 .

[24]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[25]  R. Ogden,et al.  Constitutive modelling of arteries , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Charles A. Taylor,et al.  Efficient anisotropic adaptive discretization of the cardiovascular system , 2006 .

[27]  D. Ku,et al.  Fluid mechanics of vascular systems, diseases, and thrombosis. , 1999, Annual review of biomedical engineering.

[28]  E. Stein,et al.  A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains , 1996 .

[29]  Pascal Frey,et al.  Fluid-structure interaction in blood flows on geometries based on medical imaging , 2005 .

[30]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[31]  Toshiaki Hisada,et al.  Fluid–structure interaction analysis of the two-dimensional flag-in-wind problem by an interface-tracking ALE finite element method , 2007 .

[32]  R Pietrabissa,et al.  Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections. , 1996, The Journal of thoracic and cardiovascular surgery.

[33]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[34]  Robin Shandas,et al.  Influence of connection geometry and SVC-IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study. , 2002, Journal of biomechanical engineering.

[35]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[36]  Charles A. Taylor,et al.  Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. , 2009, The Journal of thoracic and cardiovascular surgery.

[37]  Marek Behr,et al.  The Shear-Slip Mesh Update Method , 1999 .

[38]  T. Tezduyar,et al.  Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—Dependence of the effect on the aneurysm shape , 2007 .

[39]  K. Collins,et al.  The extracardiac conduit Fontan operation using minimal approach extracorporeal circulation: early and midterm outcomes. , 2006, The Journal of thoracic and cardiovascular surgery.

[40]  A. Marsden,et al.  A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations , 2011 .

[41]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[42]  E. Oñate,et al.  Possibilities of the particle finite element method for fluid–soil–structure interaction problems , 2011 .

[43]  Stefan Turek,et al.  International Workshop on Fluid-Structure Interaction: Theory, Numerics and Applications , 2009 .

[44]  Tayfun E. Tezduyar,et al.  Modeling of fluid–structure interactions with the space–time finite elements: contact problems , 2008 .

[45]  T. Tezduyar,et al.  Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique , 2008 .

[46]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[47]  Alvaro L. G. A. Coutinho,et al.  Compressible Flow SUPG Stabilization Parameters Computed from Degree-of-freedom Submatrices , 2006 .

[48]  Charles A. Taylor,et al.  Effects of Exercise and Respiration on Hemodynamic Efficiency in CFD Simulations of the Total Cavopulmonary Connection , 2007, Annals of Biomedical Engineering.

[49]  Eugenio Oñate,et al.  Fluid–structure interaction problems with strong added‐mass effect , 2009 .

[50]  R. Hetzer,et al.  Kardiale Assist-Systeme – Gegenwärtiger Stand , 2002, Herz.

[51]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of arterial fluid–structure interactions with patient‐specific data , 2010 .

[52]  Charles A. Taylor,et al.  A Computational Framework for Fluid-Solid-Growth Modeling in Cardiovascular Simulations. , 2009, Computer methods in applied mechanics and engineering.

[53]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[54]  T. Tezduyar,et al.  Improved Discontinuity-capturing Finite Element Techniques for Reaction Effects in Turbulence Computation , 2006 .

[55]  T. Tezduyar,et al.  Influencing factors in image‐based fluid–structure interaction computation of cerebral aneurysms , 2011 .

[56]  Charles A. Taylor,et al.  Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries , 2006 .

[57]  Katsuji Tanizawa,et al.  Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids , 2007 .

[58]  H. Bungartz,et al.  An Eulerian approach for partitioned fluid–structure simulations on Cartesian grids , 2008 .

[59]  George P. Chatzimavroudis,et al.  Fluid Mechanic Assessment of the Total Cavopulmonary Connection using Magnetic Resonance Phase Velocity Mapping and Digital Particle Image Velocimetry , 2004, Annals of Biomedical Engineering.

[60]  Biswajit Kar,et al.  The effect of LVAD aortic outflow-graft placement on hemodynamics and flow: Implantation technique and computer flow modeling. , 2005, Texas Heart Institute journal.

[61]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[62]  Alessandro Corsini,et al.  Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD) , 2007 .

[63]  Toshio Kobayashi,et al.  Influence of wall elasticity in patient-specific hemodynamic simulations , 2007 .

[64]  M. Epstein,et al.  Cardiovascular Solid Mechanics: Cells, Tissues, and Organs , 2002 .

[65]  Tayfun E. Tezduyar,et al.  Space–time SUPG finite element computation of shallow-water flows with moving shorelines , 2011 .

[66]  S. Mittal,et al.  Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations , 1992 .

[67]  Alain Lo Nonlinear dynamic analysis of cable and membrane structures , 1981 .

[68]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[69]  Thirumalachari Sundararajan,et al.  Non‐Newtonian blood flow study in a model cavopulmonary vascular system , 2011 .

[70]  Hans-Joachim Bungartz,et al.  Fluid-Structure Interaction on Cartesian Grids: Flow Simulation and Coupling Environment , 2006 .

[71]  Wulf G. Dettmer,et al.  On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction , 2008 .

[72]  Michael Schäfer,et al.  Efficiency and accuracy of fluid-structure interaction simulations using an implicit partitioned approach , 2008 .

[73]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[74]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[75]  Tomohiro Sawada,et al.  LLM and X-FEM based interface modeling of fluid–thin structure interactions on a non-interface-fitted mesh , 2011 .

[76]  Roger D. Kamm,et al.  The Impact of Calcification on the Biomechanical Stability of Atherosclerotic Plaques , 2001, Circulation.

[77]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[78]  Murat Manguoglu,et al.  A parallel sparse algorithm targeting arterial fluid mechanics computations , 2011 .

[79]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[80]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[81]  Yuri Bazilevs,et al.  Computational fluid–structure interaction: methods and application to a total cavopulmonary connection , 2009 .

[82]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[83]  F. Migliavacca,et al.  Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis. , 2003, Journal of biomechanical engineering.

[84]  F. Migliavacca,et al.  Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. , 2003, The Journal of thoracic and cardiovascular surgery.

[85]  Kenji Takizawa,et al.  Patient‐specific arterial fluid–structure interaction modeling of cerebral aneurysms , 2011 .

[86]  R. Löhner,et al.  Fast numerical solutions of patient‐specific blood flows in 3D arterial systems , 2010, International journal for numerical methods in biomedical engineering.

[87]  Genki Yagawa,et al.  Parallel computing of high‐speed compressible flows using a node‐based finite‐element method , 2003 .

[88]  Rainald Löhner,et al.  Extending the Range and Applicability of the Loose Coupling Approach for FSI Simulations , 2006 .

[89]  Guang-Zhong Yang,et al.  Helical and Retrograde Secondary Flow Patterns in the Aortic Arch Studied by Three‐Directional Magnetic Resonance Velocity Mapping , 1993, Circulation.

[90]  M. Stuparu HUMAN HEART VALVES. HYPERELASTIC MATERIAL MODELING , 2002 .

[91]  J. Womersley Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known , 1955, The Journal of physiology.

[92]  D. Ku,et al.  Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. , 1988, Archives of pathology & laboratory medicine.

[93]  Alessandro Corsini,et al.  A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors , 2010 .

[94]  Jeffrey R. Gohean A closed-loop multi-scale model of the cardiovascular system for evaluation of ventricular assist devices , 2007 .

[95]  Roger Ohayon,et al.  Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems , 2001 .

[96]  Toshio Kobayashi,et al.  Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms , 2010 .

[97]  Yuri Bazilevs,et al.  High-Fidelity Tetrahedral Mesh Generation from Medical Imaging Data for Fluid-Structure Interaction Analysis of Cerebral Aneurysms , 2009 .

[98]  Arif Masud,et al.  A multiscale stabilized ALE formulation for incompressible flows with moving boundaries , 2010 .

[99]  S. Mittal,et al.  Massively parallel finite element computation of incompressible flows involving fluid-body interactions , 1994 .

[100]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[101]  F Mut,et al.  Clinical application of image‐based CFD for cerebral aneurysms , 2011, International journal for numerical methods in biomedical engineering.

[102]  Tayfun E. Tezduyar,et al.  Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements , 2004 .

[103]  S. Takeuchi,et al.  Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow , 2010 .

[104]  R. Ohayon,et al.  Fluid-Structure Interaction: Applied Numerical Methods , 1995 .

[105]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[106]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[107]  James E. Lock,et al.  Rest and exercise hemodynamics after the Fontan procedure. , 1982 .

[108]  Victor M. Calo,et al.  YZβ discontinuity capturing for advection‐dominated processes with application to arterial drug delivery , 2007 .

[109]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes , 2011 .

[110]  Roland Wüchner,et al.  Algorithmic treatment of shells and free form-membranes in FSI , 2006 .

[111]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[112]  Tayfun E. Tezduyar,et al.  PARALLEL FINITE ELEMENT SIMULATION OF 3D INCOMPRESSIBLE FLOWS: FLUID-STRUCTURE INTERACTIONS , 1995 .

[113]  Tayfun E. Tezduyar,et al.  Computation of free-surface flows and fluid–object interactions with the CIP method based on adaptive meshless soroban grids , 2007 .

[114]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[115]  Michael L. Accorsi,et al.  Parachute fluid-structure interactions: 3-D computation , 2000 .

[116]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[117]  R M Nerem,et al.  Correlation of Endothelial Cell Shape and Wall Shear Stress in a Stenosed Dog Aorta , 1986, Arteriosclerosis.

[118]  Gregory M. Hulbert,et al.  New Methods in Transient Analysis , 1992 .

[119]  T. Tezduyar,et al.  Fluid–structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures , 2006 .

[120]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[121]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[122]  R Pietrabissa,et al.  Computational transient simulations with varying degree and shape of pulmonic stenosis in models of the bidirectional cavopulmonary anastomosis. , 1997, Medical engineering & physics.

[123]  P. Nithiarasu,et al.  A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method , 2008 .

[124]  Tayfun E. Tezduyar,et al.  Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations , 1986 .

[125]  Michael L. Accorsi,et al.  CURRENT 3-D STRUCTURAL DYNAMIC FINITE ELEMENT MODELING CAPABILITIES , 1997 .

[126]  Tayfun E. Tezduyar,et al.  Enhanced-discretization Selective Stabilization Procedure (EDSSP) , 2006 .

[127]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a cross parachute: Numerical simulation , 2001 .

[128]  Genki Yagawa,et al.  Accurate fluid-structure interaction computations using elements without mid-side nodes , 2011 .

[129]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[130]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[131]  Mette S. Olufsen,et al.  Modeling the arterial system with reference to an anesthesia simulator , 1998 .

[132]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[133]  Tayfun E. Tezduyar,et al.  Multiscale sequentially-coupled arterial FSI technique , 2010 .

[134]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[135]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[136]  Alvaro L. G. A. Coutinho,et al.  Compressible flow SUPG parameters computed from element matrices , 2005 .

[137]  René de Borst,et al.  On the Nonnormality of Subiteration for a Fluid-Structure-Interaction Problem , 2005, SIAM J. Sci. Comput..

[138]  R M Nerem,et al.  The elongation and orientation of cultured endothelial cells in response to shear stress. , 1985, Journal of biomechanical engineering.

[139]  A. Shaaban,et al.  Wall shear stress and early atherosclerosis: a review. , 2000, AJR. American journal of roentgenology.

[140]  P. M. Naghdi,et al.  A derivation of equations for wave propagation in water of variable depth , 1976, Journal of Fluid Mechanics.

[141]  Toshio Kobayashi,et al.  Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation , 2006 .

[142]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[143]  Yuri Bazilevs,et al.  Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation , 2011 .

[144]  J. G. Kennedy,et al.  Computation of incompressible flows with implicit finite element implementations on the Connection Machine , 1993 .

[145]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[146]  Tayfun E. Tezduyar,et al.  Automatic mesh update with the solid-extension mesh moving technique , 2004 .

[147]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of complex fluid–structure interactions , 2010 .

[148]  Pau Klein,et al.  San Francisco, California , 2007 .

[149]  Tayfun E. Tezduyar,et al.  Fluid-Structure Interaction Modeling of Spacecraft Parachutes for Simulation-Based Design , 2012 .

[150]  O. Frank,et al.  Die grundform des arteriellen pulses , 1899 .

[151]  Tayfun E. Tezduyar,et al.  Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions , 2010 .

[152]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[153]  Thomas J. R. Hughes,et al.  A case study in parallel computation: Viscous flow around an ONERA M6 wing , 1995 .

[154]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres with the SUPG Formulation and YZβ Shock-Capturing , 2006 .

[155]  J. Goldman,et al.  Control of the shape of a thrombus-neointima-like structure by blood shear stress. , 2002, Journal of biomechanical engineering.

[156]  Perumal Nithiarasu,et al.  Application of a locally conservative Galerkin (LCG) method for modelling blood flow through a patient‐specific carotid bifurcation , 2010 .

[157]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .

[158]  Ryo Torii,et al.  Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms , 2010 .

[159]  Edward W. Merrill,et al.  Shear Rate Dependence of the Viscosity of Whole Blood and Plasma , 1961, Science.

[160]  A. Sameh,et al.  A nested iterative scheme for computation of incompressible flows in long domains , 2008 .

[161]  Giancarlo Sangalli,et al.  Variational Multiscale Analysis: the Fine-scale Green's Function, Projection, Optimization, Localization, and Stabilized Methods , 2007, SIAM J. Numer. Anal..

[162]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[163]  Tayfun E. Tezduyar,et al.  Shear-Slip Mesh Update in 3D Computation of Complex Flow Problems with Rotating Mechanical Components , 2001 .

[164]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a parachute crossing the far wake of an aircraft , 2001 .

[165]  Tayfun E. Tezduyar,et al.  Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids—An overview , 2007 .

[166]  Yuri Bazilevs,et al.  A fully-coupled fluid-structure interaction simulation of cerebral aneurysms , 2010 .

[167]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[168]  J. Boyle,et al.  Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches , 2008 .

[169]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[170]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[171]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[172]  Alessandro Corsini,et al.  Stabilized finite element computation of NOx emission in aero‐engine combustors , 2011 .

[173]  E. Oñate,et al.  Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM , 2008 .

[174]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Special methods and enhanced solution techniques , 2007 .

[175]  T. Tezduyar,et al.  A comparative study based on patient-specific fluid-structure interaction modeling of cerebral aneurysms , 2012 .

[176]  Murat Manguoglu,et al.  Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement , 2010 .

[177]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[178]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[179]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces , 2007 .

[180]  Murat Manguoglu,et al.  Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement , 2011 .

[181]  Victor M. Calo,et al.  Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow , 2008 .

[182]  A. Sameh,et al.  Preconditioning Techniques for Nonsymmetric Linear Systems in the Computation of Incompressible Flows , 2009 .

[183]  Tayfun E. Tezduyar,et al.  Flow simulation and high performance computing , 1996 .

[184]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[185]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[186]  Thomas J. R. Hughes,et al.  Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations , 1984 .

[187]  Y. Yoshida,et al.  Junction complexes of endothelial cells in atherosclerosis-prone and atherosclerosis-resistant regions on flow dividers of brachiocephalic bifurcations in the rabbit aorta. , 1994, Biorheology.

[188]  F. Fontan,et al.  Surgical repair of tricuspid atresia , 1971, Thorax.

[189]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[190]  Yuri Bazilevs,et al.  Determination of Wall Tension in Cerebral Artery Aneurysms by Numerical Simulation , 2008, Stroke.

[191]  T. Tezduyar,et al.  Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling , 2008 .

[192]  E. M. Pedersen,et al.  Flow during exercise in the total cavopulmonary connection measured by magnetic resonance velocity mapping , 2002, Heart.

[193]  Tayfun E. Tezduyar,et al.  Parallel fluid dynamics computations in aerospace applications , 1995 .

[194]  E. Oñate,et al.  A monolithic Lagrangian approach for fluid–structure interaction problems , 2010 .

[195]  Tayfun E. Tezduyar,et al.  Stabilization Parameters and Smagorinsky Turbulence Model , 2003 .

[196]  Toshio Kobayashi,et al.  Influence of wall elasticity on image-based blood flow simulations , 2004 .

[197]  Tayfun E. Tezduyar,et al.  Incompressible flow computations based on the vorticity-stream function and velocity-pressure formulations , 1990 .

[198]  E. Oñate,et al.  FIC/FEM Formulation with Matrix Stabilizing Terms for Incompressible Flows at Low and High Reynolds Numbers , 2006 .

[199]  Ming-Chen Hsu,et al.  Computational vascular fluid–structure interaction: methodology and application to cerebral aneurysms , 2010, Biomechanics and modeling in mechanobiology.

[200]  Tayfun E. Tezduyar,et al.  Simulation of multiple spheres falling in a liquid-filled tube , 1996 .

[201]  Tayfun E. Tezduyar,et al.  Advanced mesh generation and update methods for 3D flow simulations , 1999 .

[202]  Toshio Kobayashi,et al.  Fluid-structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes , 2009 .

[203]  Kenji Takizawa,et al.  Space–time fluid–structure interaction modeling of patient‐specific cerebral aneurysms , 2011 .