Linking phosphoinositide function to mitosis.

[1]  A. Echard,et al.  Cytokinetic abscission requires actin-dependent microtubule severing , 2023, bioRxiv.

[2]  Hannes Maib,et al.  Recombinant biosensors for multiplex and super-resolution imaging of phosphoinositides , 2023, bioRxiv.

[3]  A. K. Caydasi,et al.  The signalling lipid PI3,5P2 is essential for timely mitotic exit , 2023, Open Biology.

[4]  Gerald R. V. Hammond,et al.  Molding a PI(3,5)P2 biosensor , 2023, The Journal of cell biology.

[5]  G. Powis,et al.  Pleckstrin Homology [PH] domain, structure, mechanism, and contribution to human disease. , 2023, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[6]  T. Soldati,et al.  A PI(3,5)P2 reporter reveals PIKfyve activity and dynamics on macropinosomes and phagosomes , 2023, The Journal of cell biology.

[7]  L. Cantley,et al.  Targeting the Dark Lipid Kinase PIP4K2C with a Potent and Selective Binder and Degrader. , 2023, Angewandte Chemie.

[8]  B. Benoit,et al.  Septins as membrane influencers: direct play or in association with other cytoskeleton partners , 2023, Frontiers in Cell and Developmental Biology.

[9]  J. Acharya,et al.  Lipid Polarization during Cytokinesis , 2022, Cells.

[10]  Gerald R. V. Hammond,et al.  PI(4,5)P2 diffuses freely in the plasma membrane even within high-density effector protein complexes , 2022, The Journal of cell biology.

[11]  S. Kotak,et al.  Membrane compartmentalization of Ect2/Cyk4/Mklp1 and NuMA/dynein regulates cleavage furrow formation , 2022, The Journal of cell biology.

[12]  Daniel J. Blankenberg,et al.  Delivery of ceramide phosphoethanolamine lipids to the cleavage furrow through the endocytic pathway is essential for male meiotic cytokinesis , 2022, PLoS biology.

[13]  V. Haucke,et al.  Phosphoinositides as membrane organizers , 2022, Nature Reviews Molecular Cell Biology.

[14]  L. Weisman,et al.  Roles of PIKfyve in multiple cellular pathways , 2022, Current Opinion in Cell Biology.

[15]  G. Merlo,et al.  PI(3,4)P2-mediated cytokinetic abscission prevents early senescence and cataract formation , 2021, Science.

[16]  E. Spiliotis,et al.  Cellular functions of actin- and microtubule-associated septins , 2021, Current Biology.

[17]  R. Fraschini,et al.  A novel coordinated function of Myosin II with GOLPH3 controls centralspindlin localization during cytokinesis in Drosophila , 2020, Journal of Cell Science.

[18]  K. Hossain,et al.  Physiological roles of transverse lipid asymmetry of animal membranes. , 2020, Biochimica et biophysica acta. Biomembranes.

[19]  J. Carlton,et al.  Membrane and organelle dynamics during cell division , 2020, Nature Reviews Molecular Cell Biology.

[20]  M. Broggini,et al.  Downregulation of class II phosphoinositide 3-kinase PI3K-C2β delays cell division and potentiates the effect of docetaxel on cancer cell growth , 2019, Journal of Experimental & Clinical Cancer Research.

[21]  T. Balla,et al.  Defining the subcellular distribution and metabolic channeling of phosphatidylinositol , 2019, bioRxiv.

[22]  Gerald R. V. Hammond,et al.  Probing the subcellular distribution of phosphatidylinositol reveals a surprising lack at the plasma membrane , 2019, bioRxiv.

[23]  A. Echard,et al.  PTEN reduces endosomal PtdIns(4,5)P2 in a phosphatase-independent manner via a PLC pathway , 2019, The Journal of cell biology.

[24]  B. Vanhaesebroeck,et al.  PI3K isoforms in cell signalling and vesicle trafficking , 2019, Nature Reviews Molecular Cell Biology.

[25]  R. Teasdale,et al.  Classification of the human phox homology (PX) domains based on their phosphoinositide binding specificities , 2019, Nature Communications.

[26]  T. Fujimoto,et al.  Definition of phosphoinositide distribution in the nanoscale. , 2019, Current opinion in cell biology.

[27]  G. Hickson,et al.  IPIP27 Coordinates PtdIns(4,5)P2 Homeostasis for Successful Cytokinesis , 2019, Current Biology.

[28]  B. Hille,et al.  Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. , 2019, The Biochemical journal.

[29]  R. Medema,et al.  Cytokinesis defects and cancer , 2018, Nature Reviews Cancer.

[30]  T. Balla,et al.  Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. , 2018, Advances in experimental medicine and biology.

[31]  A. Oldani,et al.  Kinesin-2 Controls the Motility of RAB5 Endosomes and Their Association with the Spindle in Mitosis , 2018, International journal of molecular sciences.

[32]  M. Kozlov,et al.  Resolving ESCRT-III Spirals at the Intercellular Bridge of Dividing Cells Using 3D STORM. , 2018, Cell reports.

[33]  L. Cantley,et al.  PIP4Ks Suppress Insulin Signaling through a Catalytic-Independent Mechanism , 2018, bioRxiv.

[34]  M. Glotzer,et al.  Spatiotemporal Regulation of RhoA during Cytokinesis , 2018, Current Biology.

[35]  A. Echard,et al.  Membrane Traffic in the Late Steps of Cytokinesis , 2018, Current Biology.

[36]  F. Fan,et al.  Mitotic Spindle Assembly and Genomic Stability in Breast Cancer Require PI3K-C2α Scaffolding Function. , 2017, Cancer cell.

[37]  K. Gould,et al.  Phosphoinositide-mediated ring anchoring resists perpendicular forces to promote medial cytokinesis , 2017, The Journal of cell biology.

[38]  T. Nemoto,et al.  Dynamics and function of ERM proteins during cytokinesis in human cells , 2017, FEBS letters.

[39]  O. Devuyst,et al.  The 5-phosphatase OCRL in Lowe syndrome and Dent disease 2 , 2017, Nature Reviews Nephrology.

[40]  B. Maček,et al.  Ste12/Fab1 phosphatidylinositol-3-phosphate 5-kinase is required for nitrogen-regulated mitotic commitment and cell size control , 2017, PloS one.

[41]  A. Houdusse,et al.  Oxidation of F-actin controls the terminal steps of cytokinesis , 2017, Nature Communications.

[42]  Andreas Roos,et al.  Mutations in INPP5K, Encoding a Phosphoinositide 5-Phosphatase, Cause Congenital Muscular Dystrophy with Cataracts and Mild Cognitive Impairment , 2017, American journal of human genetics.

[43]  G. Nalepa,et al.  INPP5E Preserves Genomic Stability through Regulation of Mitosis , 2016, Molecular and Cellular Biology.

[44]  K. Liestøl,et al.  ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission , 2016, The Journal of cell biology.

[45]  K. Ebnet,et al.  JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis , 2015, Nature Communications.

[46]  S. Vanni,et al.  Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate , 2015, Science.

[47]  Markus R. Wenk,et al.  PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER–plasma membrane contacts , 2015, Science.

[48]  T. Balla,et al.  Polyphosphoinositide binding domains: Key to inositol lipid biology. , 2015, Biochimica et biophysica acta.

[49]  A. Echard,et al.  Phosphoinositides: Lipids with informative heads and mastermind functions in cell division. , 2015, Biochimica et biophysica acta.

[50]  M. Thumm,et al.  Characterization of PROPPIN-Phosphoinositide Binding and Role of Loop 6CD in PROPPIN-Membrane Binding. , 2015, Biophysical journal.

[51]  M. Petronczki,et al.  Cytokinesis in animal cells. , 2015, Cold Spring Harbor perspectives in biology.

[52]  E. Boucrot,et al.  Membrane curvature at a glance , 2015, Journal of Cell Science.

[53]  J. Vance Phospholipid Synthesis and Transport in Mammalian Cells , 2015, Traffic.

[54]  D. Gerlich,et al.  Cytokinetic abscission: molecular mechanisms and temporal control. , 2014, Developmental cell.

[55]  P. Gönczy,et al.  NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane , 2014, The EMBO journal.

[56]  A. Echard,et al.  SLK-dependent activation of ERMs controls LGN–NuMA localization and spindle orientation , 2014, The Journal of cell biology.

[57]  Kevan M. Shokat,et al.  Structures of PI4KIIIβ complexes show simultaneous recruitment of Rab11 and its effectors , 2014, Science.

[58]  C. Schultz,et al.  Plasma membrane phosphoinositide balance regulates cell shape during Drosophila embryo morphogenesis , 2014, The Journal of cell biology.

[59]  M. Fuller,et al.  GOLPH3 Is Essential for Contractile Ring Formation and Rab11 Localization to the Cleavage Site during Cytokinesis in Drosophila melanogaster , 2014, PLoS genetics.

[60]  Matthieu Piel,et al.  Exploring the function of cell shape and size during mitosis. , 2014, Developmental cell.

[61]  T. Balla,et al.  A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi , 2014, The Journal of cell biology.

[62]  L. Weisman,et al.  Genetically encoded fluorescent probe to visualize intracellular phosphatidylinositol 3,5-bisphosphate localization and dynamics , 2013, Proceedings of the National Academy of Sciences.

[63]  Pierre Gönczy,et al.  Mechanisms of spindle positioning: cortical force generators in the limelight. , 2013, Current opinion in cell biology.

[64]  J. Griffiths,et al.  Drosophila F-BAR protein Syndapin contributes to coupling the plasma membrane and contractile ring in cytokinesis , 2013, Open Biology.

[65]  I. Cheeseman,et al.  Cortical Dynein and Asymmetric Membrane Elongation Coordinately Position the Spindle in Anaphase , 2013, Cell.

[66]  T. Balla,et al.  Phosphoinositides: tiny lipids with giant impact on cell regulation. , 2013, Physiological reviews.

[67]  T. Duke,et al.  Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. , 2013, Developmental Cell.

[68]  L. Collinson,et al.  Centralspindlin links the mitotic spindle to the plasma membrane during cytokinesis , 2012, Nature.

[69]  Erin A. White,et al.  Centralspindlin: At the heart of cytokinesis , 2012, Cytoskeleton.

[70]  K. Oegema,et al.  Cytokinesis in animal cells. , 2012, Annual review of cell and developmental biology.

[71]  P. Wadsworth,et al.  Cell cycle–regulated cortical dynein/dynactin promotes symmetric cell division by differential pole motion in anaphase , 2012, Molecular biology of the cell.

[72]  Jennifer L. Rohn,et al.  Changes in Ect2 Localization Couple Actomyosin-Dependent Cell Shape Changes to Mitotic Progression , 2012, Developmental cell.

[73]  J. Hurley,et al.  Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. , 2012, Molecular cell.

[74]  T. Balla,et al.  PI4P and PI(4,5)P2 Are Essential But Independent Lipid Determinants of Membrane Identity , 2012, Science.

[75]  Natalie Elia,et al.  Computational model of cytokinetic abscission driven by ESCRT-III polymerization and remodeling. , 2012, Biophysical journal.

[76]  D. Gerlich,et al.  Molecular control of animal cell cytokinesis , 2012, Nature Cell Biology.

[77]  P. Frenette,et al.  An Anillin-Ect2 Complex Stabilizes Central Spindle Microtubules at the Cortex during Cytokinesis , 2012, PloS one.

[78]  Matthieu Piel,et al.  Predicting division plane position and orientation. , 2012, Trends in cell biology.

[79]  A. Miyawaki,et al.  A Role for Sphingomyelin-Rich Lipid Domains in the Accumulation of Phosphatidylinositol-4,5-Bisphosphate to the Cleavage Furrow during Cytokinesis , 2012, Molecular and Cellular Biology.

[80]  Pascale Cossart,et al.  Septins: the fourth component of the cytoskeleton , 2012, Nature Reviews Molecular Cell Biology.

[81]  B. Goud,et al.  An ARF6/Rab35 GTPase Cascade for Endocytic Recycling and Successful Cytokinesis , 2012, Current Biology.

[82]  F. Sicheri,et al.  Cleavage Furrow Organization Requires PIP2-Mediated Recruitment of Anillin , 2012, Current Biology.

[83]  Kuan-Chung Su,et al.  Targeting of the RhoGEF Ect2 to the equatorial membrane controls cleavage furrow formation during cytokinesis. , 2011, Developmental cell.

[84]  T. Balla,et al.  A highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes. , 2011, Developmental cell.

[85]  D. Teis,et al.  Assembly and disassembly of the ESCRT-III membrane scission complex , 2011, FEBS letters.

[86]  J. Dorn,et al.  Molecular networks linked by Moesin drive remodeling of the cell cortex during mitosis , 2011, The Journal of cell biology.

[87]  E. Formstecher,et al.  Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis , 2011, Nature Cell Biology.

[88]  Y. Bellaïche,et al.  Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. , 2011, Developmental cell.

[89]  Chantal Roubinet,et al.  The Inositol 5-Phosphatase dOCRL Controls PI(4,5)P2 Homeostasis and Is Necessary for Cytokinesis , 2011, Current Biology.

[90]  Patricia Grob,et al.  Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization. , 2010, Journal of molecular biology.

[91]  A. Maddox,et al.  The myriad roles of Anillin during cytokinesis. , 2010, Seminars in cell & developmental biology.

[92]  M. Eck,et al.  The FERM domain: organizing the structure and function of FAK , 2010, Nature Reviews Molecular Cell Biology.

[93]  T. Kutateladze,et al.  Translation of the phosphoinositide code by PI effectors. , 2010, Nature chemical biology.

[94]  J. Nunès,et al.  Evidence for a positive role of PtdIns5P in T‐cell signal transduction pathways , 2010, FEBS letters.

[95]  P. Verkade,et al.  SNX-BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting. , 2010, Seminars in cell & developmental biology.

[96]  D. Rubinsztein Cdks regulate autophagy via Vps34. , 2010, Molecular cell.

[97]  L. Tsai,et al.  Negative regulation of Vps34 by Cdk mediated phosphorylation. , 2010, Molecular cell.

[98]  A. Bretscher,et al.  Organizing the cell cortex: the role of ERM proteins , 2010, Nature Reviews Molecular Cell Biology.

[99]  Antonia P. Sagona,et al.  PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody , 2010, Nature Cell Biology.

[100]  T. Balla,et al.  Dual roles for the Drosophila PI 4-kinase Four wheel drive in localizing Rab11 during cytokinesis , 2009, The Journal of cell biology.

[101]  Thomas D. Pollard,et al.  Actin, a Central Player in Cell Shape and Movement , 2009, Science.

[102]  Iman van den Bout,et al.  PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions , 2009, Journal of Cell Science.

[103]  G. Schiavo,et al.  Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P2 , 2009, The Biochemical journal.

[104]  T. Takenawa,et al.  A distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a nanoscale labeling technique , 2009, Proceedings of the National Academy of Sciences.

[105]  D. Olive,et al.  Cutting Edge: Dok-1 and Dok-2 Adaptor Molecules Are Regulated by Phosphatidylinositol 5-Phosphate Production in T Cells1 , 2009, The Journal of Immunology.

[106]  H. Hilbi,et al.  Rab1 Guanine Nucleotide Exchange Factor SidM Is a Major Phosphatidylinositol 4-Phosphate-binding Effector Protein of Legionella pneumophila , 2009, Journal of Biological Chemistry.

[107]  J. Ahringer,et al.  A Casein Kinase 1 and PAR Proteins Regulate Asymmetry of a PIP2 Synthesis Enzyme for Asymmetric Spindle Positioning , 2008, Developmental cell.

[108]  J. Martin-Serrano,et al.  Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release , 2008, Proceedings of the National Academy of Sciences.

[109]  W. Sullivan,et al.  Nuf, a Rab11 effector, maintains cytokinetic furrow integrity by promoting local actin polymerization , 2008, The Journal of cell biology.

[110]  T. Martin,et al.  Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion , 2008, The Journal of cell biology.

[111]  J. Hurley,et al.  Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. , 2008, Developmental cell.

[112]  W. Sullivan,et al.  Vesicles and actin are targeted to the cleavage furrow via furrow microtubules and the central spindle , 2008, The Journal of cell biology.

[113]  M. Glotzer,et al.  Control of cortical contractility during cytokinesis. , 2008, Biochemical Society transactions.

[114]  A. Echard,et al.  Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells , 2008, The Journal of cell biology.

[115]  G. Meer,et al.  Membrane lipids: where they are and how they behave , 2008, Nature Reviews Molecular Cell Biology.

[116]  M. Lemmon,et al.  Membrane recognition by phospholipid-binding domains , 2008, Nature Reviews Molecular Cell Biology.

[117]  S. Grinstein,et al.  Membrane Phosphatidylserine Regulates Surface Charge and Protein Localization , 2008, Science.

[118]  E. Nishida,et al.  PtdIns(3,4,5)P3 regulates spindle orientation in adherent cells. , 2007, Developmental cell.

[119]  M. Gatti,et al.  Rab11 is required for membrane trafficking and actomyosin ring constriction in meiotic cytokinesis of Drosophila males. , 2007, Molecular biology of the cell.

[120]  F. Barr,et al.  Cytokinesis: Placing and Making the Final Cut , 2007, Cell.

[121]  W. Trimble,et al.  Mammalian SEPT2 is required for scaffolding nonmuscle myosin II and its kinases. , 2007, Developmental cell.

[122]  W. Cho,et al.  Mechanistic Basis of Differential Cellular Responses of Phosphatidylinositol 3,4-Bisphosphate- and Phosphatidylinositol 3,4,5-Trisphosphate-binding Pleckstrin Homology Domains* , 2007, Journal of Biological Chemistry.

[123]  G. Fairn,et al.  Regulation of Phosphoinositide Levels by the Phospholipid Transfer Protein Sec14p Controls Cdc42p/p21-Activated Kinase-Mediated Cell Cycle Progression at Cytokinesis , 2007, Eukaryotic Cell.

[124]  S. Cockcroft,et al.  Biochemical and biological functions of class I phosphatidylinositol transfer proteins. , 2007, Biochimica et biophysica acta.

[125]  A. Forer,et al.  Phospholipase C and myosin light chain kinase inhibition define a common step in actin regulation during cytokinesis , 2007, BMC Cell Biology.

[126]  J. Hurley,et al.  Molecular Architecture and Functional Model of the Complete Yeast ESCRT-I Heterotetramer , 2007, Cell.

[127]  C. Downes,et al.  Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression , 2006, Journal of Cell Science.

[128]  M. Okada,et al.  Phospholipase C isoforms are localized at the cleavage furrow during cytokinesis. , 2006, Journal of biochemistry.

[129]  B. Goud,et al.  Rab35 Regulates an Endocytic Recycling Pathway Essential for the Terminal Steps of Cytokinesis , 2006, Current Biology.

[130]  Mark Philips,et al.  Receptor Activation Alters Inner Surface Potential During Phagocytosis , 2006, Science.

[131]  C. Mandato,et al.  Regulation of the actin cytoskeleton by PIP2 in cytokinesis , 2006, Biology of the cell.

[132]  D. Glover,et al.  The Drosophila phosphatidylinositol transfer protein encoded by vibrator is essential to maintain cleavage-furrow ingression in cytokinesis , 2006, Journal of Cell Science.

[133]  S. Emr,et al.  ESCRT-I Core and ESCRT-II GLUE Domain Structures Reveal Role for GLUE in Linking to ESCRT-I and Membranes , 2006, Cell.

[134]  L. Cantley,et al.  PtdIns(5)P activates the host cell PI3‐kinase/Akt pathway during Shigella flexneri infection , 2006, The EMBO journal.

[135]  P. O’Farrell,et al.  Rho-kinase Controls Cell Shape Changes during Cytokinesis , 2006, Current Biology.

[136]  P. Dimitri,et al.  The Class I PITP Giotto Is Required for Drosophila Cytokinesis , 2006, Current Biology.

[137]  S. Narumiya,et al.  Local Change in Phospholipid Composition at the Cleavage Furrow Is Essential for Completion of Cytokinesis* , 2005, Journal of Biological Chemistry.

[138]  P. Cullen,et al.  Coincidence detection in phosphoinositide signaling. , 2005, Trends in cell biology.

[139]  G. Polevoy,et al.  PIP2 Hydrolysis and Calcium Release Are Required for Cytokinesis in Drosophila Spermatocytes , 2005, Current Biology.

[140]  L. Cantley,et al.  PtdIns(4,5)P2 Functions at the Cleavage Furrow during Cytokinesis , 2005, Current Biology.

[141]  H. Stenmark,et al.  Eap45 in Mammalian ESCRT-II Binds Ubiquitin via a Phosphoinositide-interacting GLUE Domain*♦ , 2005, Journal of Biological Chemistry.

[142]  Francisca Vazquez,et al.  Temporal and spatial regulation of phosphoinositide signaling mediates cytokinesis. , 2005, Developmental cell.

[143]  A. Herrmann,et al.  New fluorescent probes reveal that flippase-mediated flip-flop of phosphatidylinositol across the endoplasmic reticulum membrane does not depend on the stereochemistry of the lipid. , 2005, Organic & biomolecular chemistry.

[144]  P. Várnai,et al.  A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. , 2005, Molecular biology of the cell.

[145]  T. Levine,et al.  Multiple Pools of Phosphatidylinositol 4-Phosphate Detected Using the Pleckstrin Homology Domain of Osh2p* , 2004, Journal of Biological Chemistry.

[146]  Norbert Perrimon,et al.  Parallel Chemical Genetic and Genome-Wide RNAi Screens Identify Cytokinesis Inhibitors and Targets , 2004, PLoS biology.

[147]  L. Silengo,et al.  PI3Kγ Modulates the Cardiac Response to Chronic Pressure Overload by Distinct Kinase-Dependent and -Independent Effects , 2004, Cell.

[148]  A. Forer,et al.  Continuous phosphatidylinositol metabolism is required for cleavage of crane fly spermatocytes , 2004, Journal of Cell Science.

[149]  P. Várnai,et al.  The Pleckstrin Homology Domain of Phosphoinositide-specific Phospholipase Cδ4 Is Not a Critical Determinant of the Membrane Localization of the Enzyme* , 2004, Journal of Biological Chemistry.

[150]  V. Litvak,et al.  Mitotic phosphorylation of the peripheral Golgi protein Nir2 by Cdk1 provides a docking mechanism for Plk1 and affects cytokinesis completion. , 2004, Molecular cell.

[151]  R. K. McEwen,et al.  Svp1p defines a family of phosphatidylinositol 3,5‐bisphosphate effectors , 2004, The EMBO journal.

[152]  D. Alessi,et al.  FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P , 2004, Nature Cell Biology.

[153]  W. Zwart,et al.  Phosphatidylinositol 4-kinasebeta is critical for functional association of rab11 with the Golgi complex. , 2004, Molecular biology of the cell.

[154]  A. Gautreau,et al.  Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin , 2004, The Journal of cell biology.

[155]  C. Downes,et al.  Detection of novel intracellular agonist responsive pools of phosphatidylinositol 3,4-bisphosphate using the TAPP1 pleckstrin homology domain in immunoelectron microscopy. , 2004, The Biochemical journal.

[156]  A. Hutchinson,et al.  Cataracts and glaucoma in patients with oculocerebrorenal syndrome. , 2003, Archives of ophthalmology.

[157]  Junying Yuan,et al.  The PHD Finger of the Chromatin-Associated Protein ING2 Functions as a Nuclear Phosphoinositide Receptor , 2003, Cell.

[158]  W. Sullivan,et al.  Arfophilins are dual Arf/Rab 11 binding proteins that regulate recycling endosome distribution and are related to Drosophila nuclear fallout. , 2003, Molecular biology of the cell.

[159]  M. Lemmon,et al.  Phosphoinositide Recognition Domains , 2003, Traffic.

[160]  M. Snyder,et al.  Molecular Dissection of a Yeast Septin: Distinct Domains Are Required for Septin Interaction, Localization, and Function , 2003, Molecular and Cellular Biology.

[161]  J. Trosko,et al.  Growth suppression of a tumorigenic rat liver cell line by the anticancer agent, ET-18-O-CH3, is mediated by inhibition of cytokinesis , 2003, Cancer Chemotherapy and Pharmacology.

[162]  V. Litvak,et al.  Nir2, a Human Homolog of Drosophila melanogaster Retinal Degeneration B Protein, Is Essential for Cytokinesis , 2002, Molecular and Cellular Biology.

[163]  C. Downes,et al.  Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C delta1. , 2002, The Biochemical journal.

[164]  S. Munro,et al.  Targeting of Golgi-Specific Pleckstrin Homology Domains Involves Both PtdIns 4-Kinase-Dependent and -Independent Components , 2002, Current Biology.

[165]  J. Hurley,et al.  Recognizing Phosphatidylinositol 3-Phosphate , 2001, Cell.

[166]  D. Lambright,et al.  Multivalent endosome targeting by homodimeric EEA1. , 2001, Molecular cell.

[167]  Roger L. Williams,et al.  The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. , 2001, Molecular cell.

[168]  M. Lemmon,et al.  High-affinity binding of a FYVE domain to phosphatidylinositol 3-phosphate requires intact phospholipid but not FYVE domain oligomerization. , 2001, Biochemistry.

[169]  M. Yaffe,et al.  The PX domains of p47phox and p40phox bind to lipid products of PI(3)K , 2001, Nature Cell Biology.

[170]  L Shapiro,et al.  G-Protein Signaling Through Tubby Proteins , 2001, Science.

[171]  T. Kigawa,et al.  Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. , 2001, Science.

[172]  P R Evans,et al.  Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. , 2001, Science.

[173]  T. Takenawa,et al.  Phosphatidylinositol 4-Phosphate 5-Kinase Its3 and Calcineurin Ppb1 Coordinately Regulate Cytokinesis in Fission Yeast* , 2000, The Journal of Biological Chemistry.

[174]  J. A. Brill,et al.  A phospholipid kinase regulates actin organization and intercellular bridge formation during germline cytokinesis. , 2000, Development.

[175]  M. Lindsay,et al.  Localization of phosphatidylinositol 3‐phosphate in yeast and mammalian cells , 2000, The EMBO journal.

[176]  M. Lemmon,et al.  Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. , 2000, Molecular cell.

[177]  Kazuo Emoto,et al.  An Essential Role for a Membrane Lipid in Cytokinesis , 2000, The Journal of cell biology.

[178]  S. Grinstein,et al.  Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP , 1999, Current Biology.

[179]  K. Pestonjamasp,et al.  Regulation of F-actin binding to platelet moesin in vitro by both phosphorylation of threonine 558 and polyphosphatidylinositides. , 1999, Molecular biology of the cell.

[180]  A. Chawla,et al.  A functional PtdIns(3)P-binding motif , 1998, Nature.

[181]  Rein Aasland,et al.  FYVE fingers bind PtdIns(3)P , 1998, Nature.

[182]  C. Burd,et al.  Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. , 1998, Molecular cell.

[183]  T. Sasaki,et al.  Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway , 1996, The Journal of cell biology.

[184]  S. McLaughlin,et al.  The pleckstrin homology domain of phospholipase C-delta 1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. , 1995, Biochemistry.

[185]  P. Sigler,et al.  Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[186]  P. Sigler,et al.  Scratching the surface with the PH domain , 1995, Nature Structural Biology.

[187]  Y. Jaillais,et al.  Guidelines for the Use of Protein Domains in Acidic Phospholipid Imaging. , 2016, Methods in molecular biology.

[188]  P. Lappalainen,et al.  Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. , 2010, Physiological reviews.

[189]  M. Lemmon,et al.  Phosphatidylinositol 3,5-bisphosphate: metabolism and cellular functions. , 2006, Trends in biochemical sciences.

[190]  Diana Murray,et al.  PIP(2) and proteins: interactions, organization, and information flow. , 2002, Annual review of biophysics and biomolecular structure.

[191]  D. Alessi,et al.  Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. , 2002, The Biochemical journal.

[192]  Neidhard Paweletz,et al.  Walther Flemming: pioneer of mitosis research , 2001, Nature Reviews Molecular Cell Biology.