A Major Human White Matter Pathway Between Dorsal and Ventral Visual Cortex.

Human visual cortex comprises many visual field maps organized into clusters. A standard organization separates visual maps into 2 distinct clusters within ventral and dorsal cortex. We combined fMRI, diffusion MRI, and fiber tractography to identify a major white matter pathway, the vertical occipital fasciculus (VOF), connecting maps within the dorsal and ventral visual cortex. We use a model-based method to assess the statistical evidence supporting several aspects of the VOF wiring pattern. There is strong evidence supporting the hypothesis that dorsal and ventral visual maps communicate through the VOF. The cortical projection zones of the VOF suggest that human ventral (hV4/VO-1) and dorsal (V3A/B) maps exchange substantial information. The VOF appears to be crucial for transmitting signals between regions that encode object properties including form, identity, and color and regions that map spatial information.

[1]  Damien J. Mannion,et al.  Color responsiveness argues against a dorsal component of human V4. , 2011, Journal of vision.

[2]  J. Hennig,et al.  Functional magnetic resonance imaging evidence for binocular interactions in human visual cortex , 2002, Experimental Brain Research.

[3]  M. Landy,et al.  Measurement and modeling of depth cue combination: in defense of weak fusion , 1995, Vision Research.

[4]  Clayton E Curtis,et al.  Saccade Planning Evokes Topographically Specific Activity in the Dorsal and Ventral Streams , 2014, The Journal of Neuroscience.

[5]  R. Tootell,et al.  Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. , 2001, Cerebral cortex.

[6]  Karen F. LaRocque,et al.  Where is human V4? Predicting the location of hV4 and VO1 from cortical folding. , 2014, Cerebral cortex.

[7]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[8]  Jerry D. Nguyenkim,et al.  Disparity-Based Coding of Three-Dimensional Surface Orientation by Macaque Middle Temporal Neurons , 2003, The Journal of Neuroscience.

[9]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[10]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[11]  B. Julesz,et al.  A disparity gradient limit for binocular fusion. , 1980, Science.

[12]  Tomoka Naganuma,et al.  Neural Correlates for Perception of 3D Surface Orientation from Texture Gradient , 2002, Science.

[13]  Robert Desimone,et al.  Cortical Connections of Area V4 in the Macaque , 2008 .

[14]  Emiliano Ricciardi,et al.  Functional signalers of changes in visual stimuli: cortical responses to increments and decrements in motion coherence. , 2014, Cerebral cortex.

[15]  Peter Janssen,et al.  Selectivity for three-dimensional contours and surfaces in the anterior intraparietal area. , 2012, Journal of neurophysiology.

[16]  Guy A. Orban,et al.  The Extraction of 3D Shape from Texture and Shading in the Human Brain , 2008, Cerebral cortex.

[17]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[18]  S. Kastner,et al.  Two hierarchically organized neural systems for object information in human visual cortex , 2008, Nature Neuroscience.

[19]  James M. Hillis,et al.  Slant from texture and disparity cues: optimal cue combination. , 2004, Journal of vision.

[20]  Peter A. Calabresi,et al.  Tract probability maps in stereotaxic spaces: Analyses of white matter anatomy and tract-specific quantification , 2008, NeuroImage.

[21]  Franco Pestilli,et al.  3 Altered white matter in early visual pathways of human amblyopes , 2015 .

[22]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[23]  Rainer Goebel,et al.  Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns , 2008, NeuroImage.

[24]  B. Wandell,et al.  Tract Profiles of White Matter Properties: Automating Fiber-Tract Quantification , 2012, PloS one.

[25]  H H Bülthoff,et al.  Integration of depth modules: stereo and shading. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[26]  Alex R. Wade,et al.  Extended Concepts of Occipital Retinotopy , 2005 .

[27]  G C DeAngelis,et al.  The physiology of stereopsis. , 2001, Annual review of neuroscience.

[28]  Guy Marchal,et al.  Human Cortical Regions Involved in Extracting Depth from Motion , 1999, Neuron.

[29]  Marko Nardini,et al.  Fusion of disparity and texture cues to slant is not mandatory in children , 2010 .

[30]  Brian A. Wandell,et al.  Diffusion properties of major white matter tracts in young, typically developing children , 2014, NeuroImage.

[31]  Alex R. Wade,et al.  Visual areas and spatial summation in human visual cortex , 2001, Vision Research.

[32]  Guy A. Orban,et al.  Mapping the parietal cortex of human and non-human primates , 2006, Neuropsychologia.

[33]  Mark Hymers,et al.  Specialized and independent processing of orientation and shape in visual field maps LO1 and LO2 , 2013, Nature Neuroscience.

[34]  Ariel Rokem,et al.  Evaluating the Accuracy of Diffusion MRI Models in White Matter , 2015, PloS one.

[35]  B. Rogers,et al.  Similarities between motion parallax and stereopsis in human depth perception , 1982, Vision Research.

[36]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[37]  B. Wandell,et al.  Mapping Hv4 and Ventral Occipital Cortex: the Venous Eclipse , 2022 .

[38]  Franco Pestilli Test-retest measurements and digital validation for in vivo neuroscience , 2015, Scientific data.

[39]  Kent A. Stevens,et al.  Slant-tilt: The visual encoding of surface orientation , 1983, Biological Cybernetics.

[40]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[41]  B. Wandell,et al.  Differential sensitivity to words and shapes in ventral occipito-temporal cortex. , 2007, Cerebral cortex.

[42]  Peter Janssen,et al.  A Distinct Representation of Three-Dimensional Shape in Macaque Anterior Intraparietal Area: Fast, Metric, and Coarse , 2009, The Journal of Neuroscience.

[43]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  Alex R. Wade,et al.  fMRI measurements of color in macaque and human. , 2008, Journal of vision.

[45]  J. Koenderink,et al.  Surface perception in pictures , 1992, Perception & psychophysics.

[46]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[47]  B. Wandell,et al.  Development of white matter and reading skills , 2012, Proceedings of the National Academy of Sciences.

[48]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[49]  Andreas Bartels,et al.  Human Areas V3A and V6 Compensate for Self-Induced Planar Visual Motion , 2012, Neuron.

[50]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[51]  H. Sakata,et al.  Integration of perspective and disparity cues in surface-orientation-selective neurons of area CIP. , 2001, Journal of neurophysiology.

[52]  Karl J. Friston,et al.  Generative and recognition models for neuroanatomy , 2004, NeuroImage.

[53]  G. Orban,et al.  The kinetic occipital region in human visual cortex. , 1997, Cerebral cortex.

[54]  Galia Avidan,et al.  Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia , 2009, Nature Neuroscience.

[55]  Bettina Sorger,et al.  Human Cortical Object Recognition from a Visual Motion Flowfield , 2003, The Journal of Neuroscience.

[56]  Trichur Raman Vidyasagar,et al.  Dyslexia: a deficit in visuo-spatial attention, not in phonological processing , 2010, Trends in Cognitive Sciences.

[57]  L. Cormack,et al.  Disparity- and velocity-based signals for three-dimensional motion perception in human MT+ , 2009, Nature Neuroscience.

[58]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[59]  Hiroshi Ban,et al.  Integration of texture and disparity cues to surface slant in dorsal visual cortex. , 2013, Journal of neurophysiology.

[60]  S. Zeki,et al.  The processing of kinetic contours in the brain. , 2003, Cerebral cortex.

[61]  Sinisa Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[62]  F. Fang,et al.  Cortical responses to invisible objects in the human dorsal and ventral pathways , 2005, Nature Neuroscience.

[63]  Alex R. Wade,et al.  Functional measurements of human ventral occipital cortex: retinotopy and colour. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[64]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[65]  Andrew E. Welchman Decoding the Cortical Representation of Depth , 2011 .

[66]  G. Orban,et al.  Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. , 2000, Science.

[67]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[68]  Richard A Andersen,et al.  Parietal reach region encodes reach depth using retinal disparity and vergence angle signals. , 2009, Journal of neurophysiology.

[69]  G. Orban,et al.  The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors , 2010, The Journal of Neuroscience.

[70]  Kalanit Grill-Spector,et al.  Sparsely-distributed organization of face and limb activations in human ventral temporal cortex , 2010, NeuroImage.

[71]  J. Saunders,et al.  Do humans optimally integrate stereo and texture information for judgments of surface slant? , 2003, Vision Research.

[72]  Brian J. Scholl,et al.  Attentive tracking of objects vs. substances , 2010 .

[73]  Alex R. Wade,et al.  The specificity of cortical region KO to depth structure , 2006, NeuroImage.

[74]  V. Wedeen,et al.  Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo , 2003, Magnetic resonance in medicine.

[75]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[76]  Brian A Wandell,et al.  Learning to see words. , 2012, Annual review of psychology.

[77]  D. Heeger,et al.  Topographic organization for delayed saccades in human posterior parietal cortex. , 2005, Journal of neurophysiology.

[78]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[79]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[80]  O. Sporns,et al.  Dynamical consequences of lesions in cortical networks , 2008, Human brain mapping.

[81]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[82]  Rufin Vogels,et al.  Convergence of Depth from Texture and Depth from Disparity in Macaque Inferior Temporal Cortex , 2004, The Journal of Neuroscience.

[83]  Nikolaus Kriegeskorte,et al.  How does an fMRI voxel sample the neuronal activity pattern: Compact-kernel or complex spatiotemporal filter? , 2010, NeuroImage.

[84]  J. Wagemans,et al.  Some observations on the effects of slant and texture type on slant-from-texture , 2004, Vision Research.

[85]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[86]  Doris Y. Tsao,et al.  Stereopsis Activates V3A and Caudal Intraparietal Areas in Macaques and Humans , 2003, Neuron.

[87]  R. van Ee,et al.  Activation in Visual Cortex Correlates with the Awareness of Stereoscopic Depth , 2005 .

[88]  J. Gibson The perception of visual surfaces. , 1950, The American journal of psychology.

[89]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[90]  Susumu Mori,et al.  Automated fiber tracking of human brain white matter using diffusion tensor imaging , 2008, NeuroImage.

[91]  C. Wernicke,et al.  Lehrbuch der Gehirnkrankheiten für Aerzte und Studirende , 1881 .

[92]  C. Büchel,et al.  Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: an event-related fMRI study. , 2001, Journal of neurophysiology.

[93]  S. Dehaene,et al.  Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. , 2002, Brain : a journal of neurology.

[94]  Nikos K. Logothetis,et al.  Three-Dimensional Shape Representation in Monkey Cortex , 2002, Neuron.

[95]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[96]  Brian A. Wandell,et al.  Anatomy of the visual word form area: Adjacent cortical circuits and long-range white matter connections , 2013, Brain and Language.

[97]  Jitendra Malik,et al.  Surface orientation from texture: Isotropy or homogeneity (or both)? , 1997, Vision Research.

[98]  Svetlana S. Georgieva,et al.  The Processing of Three-Dimensional Shape from Disparity in the Human Brain , 2009, The Journal of Neuroscience.

[99]  Franco Pestilli,et al.  White matter consequences of retinal receptor and ganglion cell damage. , 2014, Investigative ophthalmology & visual science.

[100]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[101]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[102]  B. Wandell,et al.  Lifespan maturation and degeneration of human brain white matter , 2014, Nature Communications.

[103]  Yale E. Cohen,et al.  A common reference frame for movement plans in the posterior parietal cortex , 2002, Nature Reviews Neuroscience.

[104]  Goldstein Eb Spatial layout, orientation relative to the observer, and perceived projection in pictures viewed at an angle. , 1987 .

[105]  M. Braunstein Motion and texture as sources of slant information. , 1968, Journal of experimental psychology.

[106]  Simon B. Eickhoff,et al.  Comparison of functional and cytoarchitectonic maps of human visual areas V1, V2, V3d, V3v, and V4(v) , 2010, NeuroImage.

[107]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[108]  James M. Hillis,et al.  Combining Sensory Information: Mandatory Fusion Within, but Not Between, Senses , 2002, Science.

[109]  John M. Findlay,et al.  The area of spatial integration for initial horizontal disparity vergence , 1998, Vision Research.

[110]  Hideko F. Norman,et al.  Visual discrimination of local surface structure: Slant, tilt, and curvedness , 2006, Vision Research.

[111]  N. Logothetis,et al.  Visual Areas in Macaque Cortex Measured Using Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[112]  Barbara Gillam,et al.  Perspective, Orientation Disparity, and Anisotropy in Stereoscopic Slant Perception , 1992, Perception.

[113]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[114]  Jennifer M. D. Yoon,et al.  Functionally Defined White Matter Reveals Segregated Pathways in Human Ventral Temporal Cortex Associated with Category-Specific Processing , 2015, Neuron.

[115]  Hiroshi Ban,et al.  Perceptual Integration for Qualitatively Different 3-D Cues in the Human Brain , 2013, Journal of Cognitive Neuroscience.

[116]  R. Fields,et al.  White matter in learning, cognition and psychiatric disorders , 2008, Trends in Neurosciences.

[117]  M. Arbib,et al.  Grasping objects: the cortical mechanisms of visuomotor transformation , 1995, Trends in Neurosciences.

[118]  Derek K. Jones,et al.  Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain , 2002, NeuroImage.

[119]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[120]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[121]  K Tsutsui,et al.  Neural coding of 3D features of objects for hand action in the parietal cortex of the monkey. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[122]  Peter Janssen,et al.  Anterior Regions of Monkey Parietal Cortex Process Visual 3D Shape , 2007, Neuron.

[123]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[124]  Takahisa M. Sanada,et al.  Representation of 3-D surface orientation by velocity and disparity gradient cues in area MT. , 2012, Journal of Neurophysiology.

[125]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[126]  David C Lyon,et al.  The case for primate V3 , 2012, Proceedings of the Royal Society B: Biological Sciences.

[127]  Raymond van Ee,et al.  Temporal aspects of stereoscopic slant estimation: an evaluation and extension of Howard and Kaneko's theory , 1998, Vision Research.

[128]  S. Zeki,et al.  The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. , 1997, Brain : a journal of neurology.

[129]  C. Lebel,et al.  Diffusion tensor imaging of white matter tract evolution over the lifespan , 2012, NeuroImage.

[130]  Hiroshi Ban,et al.  The integration of motion and disparity cues to depth in dorsal visual cortex , 2012, Nature Neuroscience.

[131]  E. DeYoe,et al.  Functional magnetic resonance imaging (FMRI) of the human brain , 1994, Journal of Neuroscience Methods.

[132]  Justin L. Gardner,et al.  Modulation of Visual Responses by Gaze Direction in Human Visual Cortex , 2013, The Journal of Neuroscience.

[133]  Georgios A Keliris,et al.  Neurons in macaque area V4 acquire directional tuning after adaptation to motion stimuli , 2005, Nature Neuroscience.

[134]  Olaf Sporns,et al.  MR connectomics: Principles and challenges , 2010, Journal of Neuroscience Methods.

[135]  Lisa R. Betts,et al.  Distributed Neural Plasticity for Shape Learning in the Human Visual Cortex , 2005, PLoS biology.

[136]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[137]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[138]  S. Wakana,et al.  Fiber tract-based atlas of human white matter anatomy. , 2004, Radiology.

[139]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[140]  A. Watson,et al.  Quest: A Bayesian adaptive psychometric method , 1983, Perception & psychophysics.

[141]  S. Zeki,et al.  The architecture of the colour centre in the human visual brain: new results and a review * , 2000, The European journal of neuroscience.

[142]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[143]  David C. Knill,et al.  Surface orientation from texture: ideal observers, generic observers and the information content of texture cues , 1998, Vision Research.

[144]  Volkmar Glauche,et al.  Localization of human intraparietal areas AIP, CIP, and LIP using surface orientation and saccadic eye movement tasks , 2008, Human brain mapping.

[145]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[146]  H. Sakata,et al.  Neural representation of three-dimensional features of manipulation objects with stereopsis , 1999, Experimental Brain Research.

[147]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[148]  F A Wichmann,et al.  Ning for Helpful Comments and Suggestions. This Paper Benefited Con- Siderably from Conscientious Peer Review, and We Thank Our Reviewers the Psychometric Function: I. Fitting, Sampling, and Goodness of Fit , 2001 .

[149]  Chara Vakrou,et al.  Induced Deficits in Speed Perception by Transcranial Magnetic Stimulation of Human Cortical Areas V5/MT+ and V3A , 2008, The Journal of Neuroscience.

[150]  H. Sakata,et al.  Parietal neurons represent surface orientation from the gradient of binocular disparity. , 2000, Journal of neurophysiology.

[151]  B. Cumming,et al.  Decision-related activity in sensory neurons reflects more than a neuron’s causal effect , 2009, Nature.

[152]  Ravi S. Menon,et al.  Differential Effects of Viewpoint on Object-Driven Activation in Dorsal and Ventral Streams , 2002, Neuron.

[153]  James A. Crowell,et al.  Horizontal and vertical disparity, eye position, and stereoscopic slant perception , 1999, Vision Research.

[154]  Benjamin D. Singer,et al.  Retinotopic Organization of Human Ventral Visual Cortex , 2009, The Journal of Neuroscience.

[155]  G. Orban The extraction of 3D shape in the visual system of human and nonhuman primates. , 2011, Annual review of neuroscience.

[156]  Peter Janssen,et al.  Synchronization between the end stages of the dorsal and the ventral visual stream. , 2011, Journal of neurophysiology.

[157]  J. Gibson The Ecological Approach to the Visual Perception of Pictures , 1978 .

[158]  Jonathan Winawer,et al.  Imaging retinotopic maps in the human brain , 2011, Vision Research.

[159]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[160]  R. Andersen,et al.  Response of MSTd neurons to simulated 3D orientation of rotating planes. , 2002, Journal of neurophysiology.

[161]  Ian P. Howard,et al.  Binocular Vision and Stereopsis , 1996 .

[162]  Zoe Kourtzi,et al.  Neural correlates of disparity-defined shape discrimination in the human brain. , 2007, Journal of neurophysiology.

[163]  Douglas L. Rosene,et al.  The Geometric Structure of the Brain Fiber Pathways , 2012, Science.

[164]  Brian A Wandell,et al.  Temporal-callosal pathway diffusivity predicts phonological skills in children , 2007, Proceedings of the National Academy of Sciences.

[165]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[166]  Zoe Kourtzi,et al.  Adaptive Estimation of Three-Dimensional Structure in the Human Brain , 2009, The Journal of Neuroscience.

[167]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[168]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[169]  G. Orban,et al.  Selectivity of Macaque MT/V5 Neurons for Surface Orientation in Depth Specified by Motion , 1997, The European journal of neuroscience.

[170]  Z. Kourtzi,et al.  Multivoxel Pattern Selectivity for Perceptually Relevant Binocular Disparities in the Human Brain , 2008, The Journal of Neuroscience.

[171]  H. Bülthoff,et al.  3D shape perception from combined depth cues in human visual cortex , 2005, Nature Neuroscience.

[172]  A. Parker Binocular depth perception and the cerebral cortex , 2007, Nature Reviews Neuroscience.

[173]  Brian A Wandell,et al.  Biological development of reading circuits , 2013, Current Opinion in Neurobiology.

[174]  Yaniv Assaf,et al.  Separate parts of occipito-temporal white matter fibers are associated with recognition of faces and places , 2014, NeuroImage.

[175]  M. Catani,et al.  A lateralized brain network for visuospatial attention , 2011, Nature Neuroscience.

[176]  R Vogels,et al.  Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[177]  Raymond van Ee,et al.  Bi-stability in perceived slant when binocular disparity and monocular perspective specify different slants. , 2002, Journal of vision.

[178]  Aldo Genovesio,et al.  Integration of retinal disparity and fixation-distance related signals toward an egocentric coding of distance in the posterior parietal cortex of primates. , 2004, Journal of neurophysiology.

[179]  Franco Pestilli,et al.  Altered white matter in early visual pathways of humans with amblyopia , 2015, Vision Research.

[180]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[181]  Geoffrey M Boynton,et al.  The Representation of Behavioral Choice for Motion in Human Visual Cortex , 2007, The Journal of Neuroscience.

[182]  Geraint Rees,et al.  Knowing with Which Eye We See: Utrocular Discrimination and Eye-Specific Signals in Human Visual Cortex , 2010, PloS one.

[183]  J. Martino,et al.  Wernicke perpendicular fasciculus and vertical portion of the superior longitudinal fasciculus: in reply. , 2013, Neurosurgery.

[184]  Felix Wichmann,et al.  The psychometric function: II. Bootstrap-based confidence intervals and sampling , 2001, Perception & psychophysics.

[185]  David C Knill,et al.  Mixture models and the probabilistic structure of depth cues , 2003, Vision Research.

[186]  K. Grill-Spector,et al.  The dynamics of object-selective activation correlate with recognition performance in humans , 2000, Nature Neuroscience.

[187]  M. Taira,et al.  Cortical Areas Related to Attention to 3D Surface Structures Based on Shading: An fMRI Study , 2001, NeuroImage.

[188]  S Lehéricy,et al.  The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. , 2000, Brain : a journal of neurology.

[189]  James J. Clark,et al.  Data Fusion for Sensory Information Processing Systems , 1990 .

[190]  Ahna R Girshick,et al.  Probabilistic combination of slant information: weighted averaging and robustness as optimal percepts. , 2009, Journal of vision.

[191]  Izumi Ohzawa,et al.  Joint-encoding of motion and depth by visual cortical neurons: neural basis of the Pulfrich effect , 2001, Nature Neuroscience.

[192]  J. Hennig,et al.  The Processing of First- and Second-Order Motion in Human Visual Cortex Assessed by Functional Magnetic Resonance Imaging (fMRI) , 1998, The Journal of Neuroscience.

[193]  B. Wandell,et al.  The vertical occipital fasciculus: A century of controversy resolved by in vivo measurements , 2014, Proceedings of the National Academy of Sciences.

[194]  P. Thompson,et al.  Diffusion imaging, white matter, and psychopathology. , 2011, Annual review of clinical psychology.

[195]  Kalanit Grill-Spector,et al.  Representation of shapes, edges, and surfaces across multiple cues in the human visual cortex. , 2008, Journal of neurophysiology.

[196]  Ronald R. Peeters,et al.  Parietal regions processing visual 3D shape extracted from disparity , 2009, NeuroImage.