Tunable recombinant protein expression in E. coli: enabler for continuous processing?

[1]  Lawrence X. Yu,et al.  Modernizing Pharmaceutical Manufacturing: from Batch to Continuous Production , 2015, Journal of Pharmaceutical Innovation.

[2]  Konstantin B Konstantinov,et al.  White paper on continuous bioprocessing. May 20-21, 2014 Continuous Manufacturing Symposium. , 2015, Journal of pharmaceutical sciences.

[3]  Richard D Braatz,et al.  Control Systems Engineering in Continuous Pharmaceutical Manufacturing May 20-21, 2014 Continuous Manufacturing Symposium. , 2015, Journal of pharmaceutical sciences.

[4]  Chase L. Beisel,et al.  Trade-offs in Engineering Sugar Utilization Pathways for Titratable Control , 2014, ACS synthetic biology.

[5]  Richard D Braatz,et al.  Control systems engineering in continuous pharmaceutical manufacturing. May 20-21, 2014 Continuous Manufacturing Symposium. , 2015, Journal of pharmaceutical sciences.

[6]  L. Richard Stock,et al.  The Potential Impact of Continuous Processing on the Practice and Economics of Biopharmaceutical Manufacturing , 2014 .

[7]  Suzanne S. Farid,et al.  Evaluating the economic and operational feasibility of continuous processes for monoclonal antibodies , 2014 .

[8]  P. Kilby,et al.  Amino acid misincorporation in recombinant biopharmaceutical products. , 2014, Current opinion in biotechnology.

[9]  Justin R Klesmith,et al.  The Interrelationship between Promoter Strength, Gene Expression, and Growth Rate , 2014, PloS one.

[10]  Gary Walsh,et al.  Biopharmaceutical benchmarks 2014 , 2014, Nature Biotechnology.

[11]  Dan Paulsson,et al.  A Soft Sensor for Bioprocess Control Based on Sequential Filtering of Metabolic Heat Signals , 2014, Sensors.

[12]  Chase L. Beisel,et al.  Bacterial sugar utilization gives rise to distinct single‐cell behaviours , 2014, Molecular microbiology.

[13]  M. Jazini,et al.  Bacterial Suspension Cultures , 2014 .

[14]  H. Meyer,et al.  Industrial Scale Suspension Culture of Living Cells , 2014 .

[15]  S. Harcum,et al.  Dynamic transcriptional response of Escherichia coli to inclusion body formation , 2014, Biotechnology and bioengineering.

[16]  Germán L. Rosano,et al.  Recombinant protein expression in Escherichia coli: advances and challenges , 2014, Front. Microbiol..

[17]  Joachim O. Rädler,et al.  Single Cell Kinetics of Phenotypic Switching in the Arabinose Utilization System of E. coli , 2014, PloS one.

[18]  O. Spadiut,et al.  Tunable recombinant protein expression with E. coli in a mixed-feed environment , 2014, Applied Microbiology and Biotechnology.

[19]  O. Spadiut,et al.  Tunable recombinant protein expression with E. coli in a mixed-feed environment , 2013, Applied Microbiology and Biotechnology.

[20]  Christoph Herwig,et al.  Soft-sensor assisted dynamic investigation of mixed feed bioprocesses , 2013 .

[21]  Christoph Herwig,et al.  Soft sensor assisted dynamic bioprocess control: Efficient tools for bioprocess development , 2013 .

[22]  Gerald Striedner,et al.  Comparative Transcription Profiling and In-Depth Characterization of Plasmid-Based and Plasmid-Free Escherichia coli Expression Systems under Production Conditions , 2013, Applied and Environmental Microbiology.

[23]  C. Collins,et al.  Modular optimization of multi-gene pathways for fatty acids production in E. coli , 2013, Nature Communications.

[24]  Daniel Cummings,et al.  Integrated continuous production of recombinant therapeutic proteins , 2012, Biotechnology and bioengineering.

[25]  Rob Phillips,et al.  Tuning Promoter Strength through RNA Polymerase Binding Site Design in Escherichia coli , 2012, PLoS Comput. Biol..

[26]  Christoph Herwig,et al.  Real-time estimation of biomass and specific growth rate in physiologically variable recombinant fed-batch processes , 2012, Bioprocess and Biosystems Engineering.

[27]  D. Drew,et al.  Optimizing membrane protein overexpression in the Escherichia coli strain Lemo21(DE3). , 2012, Journal of molecular biology.

[28]  Carl-Fredrik Mandenius,et al.  Soft sensors in bioprocessing: a status report and recommendations. , 2012, Biotechnology journal.

[29]  Martin Dragosits,et al.  Recombinant Fab expression and secretion in Escherichia coli continuous culture at medium cell densities: Influence of temperature , 2012 .

[30]  K. Bettenbrock,et al.  lac operon induction in Escherichia coli: Systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA. , 2012, Journal of biotechnology.

[31]  Peter Ruhdal Jensen,et al.  Tunable promoters in synthetic and systems biology. , 2012, Sub-cellular biochemistry.

[32]  Agustín Correa,et al.  Tuning different expression parameters to achieve soluble recombinant proteins in E. coli: Advantages of high‐throughput screening , 2011, Biotechnology journal.

[33]  H. Tegel,et al.  Enhancing the protein production levels in Escherichia coli with a strong promoter , 2011, The FEBS journal.

[34]  M. Camps Modulation of ColE1-like plasmid replication for recombinant gene expression. , 2010, Recent patents on DNA & gene sequences.

[35]  Brian Kelley,et al.  Industrialization of mAb production technology: The bioprocessing industry at a crossroads , 2009, mAbs.

[36]  Robert H. Davis,et al.  Plasmid-encoded protein: the principal factor in the "metabolic burden" associated with recombinant bacteria. Biotechnology Bioengineering, 1990. , 2009, Biotechnology and bioengineering.

[37]  Carl-Fredrik Mandenius,et al.  Bioprocess optimization using design‐of‐experiments methodology , 2008, Biotechnology progress.

[38]  Samuel Wagner,et al.  Tuning Escherichia coli for membrane protein overexpression , 2008, Proceedings of the National Academy of Sciences.

[39]  Kirsten Jung,et al.  Timing and dynamics of single cell gene expression in the arabinose utilization system. , 2008, Biophysical journal.

[40]  Stephen M. Krone,et al.  Modelling the spatial dynamics of plasmid transfer and persistence. , 2007, Microbiology.

[41]  Jo Maertens,et al.  Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering , 2007, BMC biotechnology.

[42]  K. V. van Wijk,et al.  Consequences of membrane protein overexpression in Escherichia coli , 2007 .

[43]  B. Hock,et al.  An online monitoring system based on a synthetic sigma32-dependent tandem promoter for visualization of insoluble proteins in the cytoplasm of Escherichia coli , 2007, Applied Microbiology and Biotechnology.

[44]  Carl W. Gunderson,et al.  Toxic protein expression in Escherichia coli using a rhamnose-based tightly regulated and tunable promoter system. , 2006, BioTechniques.

[45]  Jay D. Keasling,et al.  A Propionate-Inducible Expression System for Enteric Bacteria , 2005, Applied and Environmental Microbiology.

[46]  G. Stephanopoulos,et al.  Tuning genetic control through promoter engineering. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  N. Nancib,et al.  Effect of growth rate on stability and gene expression of a recombinant plasmid during continuous culture ofEscherichia coli in a non-selective medium , 1992, Biotechnology Letters.

[48]  F. Baneyx,et al.  Recombinant protein folding and misfolding in Escherichia coli , 2004, Nature Biotechnology.

[49]  J. Claverie Recombinant Protein Expression , 2004 .

[50]  Ertugrul M. Ozbudak,et al.  Multistability in the lactose utilization network of Escherichia coli , 2004, Nature.

[51]  H. Wan,et al.  High-level expression of a lacZ gene from a bacterial artificial chromosome in Escherichia coli , 2003, Applied Microbiology and Biotechnology.

[52]  Gerald Striedner,et al.  Tuning the Transcription Rate of Recombinant Protein in Strong Escherichiacoli Expression Systems through Repressor Titration , 2003, Biotechnology progress.

[53]  J. Keasling,et al.  Modulation of gene expression from the arabinose-inducible araBAD promoter , 2002, Journal of Industrial Microbiology and Biotechnology.

[54]  J. Keasling,et al.  Regulatable Arabinose-Inducible Gene Expression System with Consistent Control in All Cells of a Culture , 2000, Journal of bacteriology.

[55]  J. Keasling,et al.  Investigating autocatalytic gene expression systems through mechanistic modeling. , 1999, Journal of theoretical biology.

[56]  J. Keasling,et al.  Gene-expression tools for the metabolic engineering of bacteria. , 1999, Trends in biotechnology.

[57]  P. Neubauer,et al.  Amplification of ColE1 related plasmids in recombinant cultures of Escherichia coli after IPTG induction. , 1998, Journal of biotechnology.

[58]  M. Bidochka,et al.  Bacterial fitness and plasmid loss: the importance of culture conditions and plasmid size. , 1998, Canadian journal of microbiology.

[59]  James C. Hu,et al.  Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[60]  C. Kurland,et al.  Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction , 1995, Journal of bacteriology.

[61]  B. Glick Metabolic load and heterologous gene expression. , 1995, Biotechnology advances.

[62]  W. Deckwer,et al.  Effect of growth rate on stability and gene expression of recombinant plasmids during continuous and high cell density cultivation of Escherichia coli TG1. , 1994, Journal of biotechnology.

[63]  A. Doherty,et al.  Overproduction of the toxic protein, bovine pancreatic DNaseI, in Escherichia coli using a tightly controlled T7-promoter-based vector. , 1993, Gene.

[64]  H V Westerhoff,et al.  The use of lac-type promoters in control analysis. , 1993, European journal of biochemistry.

[65]  Kane Jf,et al.  Properties of recombinant protein-containing inclusion bodies in Escherichia coli. , 1991 .

[66]  W. Bentley,et al.  Plasmid‐encoded protein: The principal factor in the “metabolic burden” associated with recombinant bacteria , 1990, Biotechnology and bioengineering.

[67]  U. Brinkmann,et al.  High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. , 1989, Gene.

[68]  F. Studier,et al.  Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. , 1986, Journal of molecular biology.

[69]  P. Maloney,et al.  Distribution of suboptimally induces -D-galactosidase in Escherichia coli. The enzyme content of individual cells. , 1973, Journal of molecular biology.

[70]  A. Novick,et al.  ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON. , 1957, Proceedings of the National Academy of Sciences of the United States of America.