Innovative scaling strategies for a fast development of apparatuses by modular process engineering
暂无分享,去创建一个
Marcus Grünewald | Julia Riese | Stefan Lier | Gordana Cvetanoska | Anna Katharina Lesniak | S Müller | Sarah Paul | Laura Sengen | M. Grünewald | J. Riese | S. Müller | S. Lier | L. Sengen | Sarah Paul | G. Cvetanoska | A. Lesniak
[1] Anton A. Kiss,et al. Gas holdup, axial dispersion, and mass transfer studies in bubble columns , 2012 .
[2] Geoffrey F. Hewitt. The Potential for Development in Heat Exchanger Plants , 1981 .
[3] Vivek V. Ranade,et al. Computational fluid dynamics for designing process equipment: Expectations, current status, and path forward , 2003 .
[4] V. Hessel,et al. Flow chemistry using milli- and microstructured reactors-from conventional to novel process windows. , 2010, Bioorganic & medicinal chemistry.
[5] Marcus Grünewald,et al. Net Present Value Analysis of Modular Chemical Production Plants , 2011 .
[6] Willi Hofen,et al. Scale‐up‐Probleme bei der experimentellen Verfahrensentwicklung , 1990 .
[7] Marcus Grünewald,et al. Modularisierung von Mikrotrennapparaten als Scale-up-Methode am Beispiel der Mikrodestillation , 2011 .
[8] Achim Hoffmann,et al. Standardization of Mass Transfer Measurements: A Basis for the Description of Absorption Processes , 2007 .
[9] Marcus Grünewald,et al. Erhöhung der Wirtschaftlichkeit durch beschleunigte Produkt‐ und Prozessentwicklung mit Hilfe modularer und skalierbarer Apparate , 2012 .
[10] Harald Anlauf,et al. Mechanische Flüssigkeitsabtrennung in der Lebensmittelverfahrenstechnik , 2008 .
[11] Volker Hessel,et al. Novel Process Windows – Gate to Maximizing Process Intensification via Flow Chemistry , 2009 .
[12] Bahman Zohuri. Similitude Theory and Applications , 2015 .
[13] Stefan Lier,et al. Real options-based evaluation model for transformable plant designs in the process industry , 2017 .
[14] Volker Hessel,et al. Potential Analysis of Smart Flow Processing and Micro Process Technology for Fastening Process Development: Use of Chemistry and Process Design as Intensification Fields , 2012 .
[15] Milorad P. Dudukovic,et al. Liquid backmixing in bubble columns and the axial dispersion coefficient , 1998 .
[16] Thomas Richter,et al. Mikroreaktoren — Ein neues,wirksames Werkzeug für dieReaktorentwicklung , 2000 .
[17] R. van Reis,et al. Linear scale ultrafiltration. , 1997, Biotechnology and bioengineering.
[18] Ashfaq Shaikh,et al. Scale-up of Bubble Column Reactors: A Review of Current State-of-the-Art , 2013 .
[19] Karl Hölemann,et al. Fluiddynamik und Stofftransport in gepackten Blasensäulen , 2005 .
[20] Gerd Kaibel,et al. Packungseinbauten – Neue Anwendungen bei Reaktivdestillationen und in Reaktoren† , 2003 .
[21] Philip Biessey,et al. Influence of Design Parameters on Hydrodynamics and Heat Transfer of a Modularized Millireactor , 2015 .
[22] Marcus Grünewald,et al. Beschreibung von Blasensäulen mithilfe von Kompartment‐Modellansätzen , 2013 .
[23] Angélique Delafosse,et al. CFD-based compartment model for description of mixing in bioreactors , 2014 .
[24] Dr.-Ing. Detlev U. Ringer. MEHRSTROM-WARMEAUSTAUSCHER ALS GELOTETE ALUMINIUM-PLATTENAPPARATE - STAND DES WISSENS , 1991 .
[25] Arsam Behkish,et al. HYDRODYNAMIC AND MASS TRANSFER PARAMETERS IN LARGE-SCALE SLURRY BUBBLE COLUMN REACTORS , 2005 .
[26] Holger Löwe,et al. Chemie in Mikrostrukturreaktoren , 2004 .
[27] U. Böhm,et al. Gas–liquid dispersions in structured packing with high-viscosity liquids , 2004 .
[28] Renato Paludetto,et al. Scale up of chemical reactors , 1997 .
[29] David W. Agar,et al. Einführung in die Technische Chemie , 2010 .
[30] Henrik Hahn,et al. An industrial view of process intensification , 2009 .
[31] Gemma Ribera,et al. Comparison of nanofiltration membranes’ performance in flat sheet and spiral wound configurations: a scale-up study , 2013 .
[32] N. Kockmann,et al. Microreactor Technology and Continuous Processes in the Fine Chemical and Pharmaceutical Industry: Is the Revolution Underway? , 2008 .
[33] Gerhard Ruffert,et al. Ein flexibles, mikrostrukturiertes Modul für die Desorption: Der High Efficiency Contactor , 2011 .
[34] I. Rossetti,et al. Chemical reaction engineering, process design and scale-up issues at the frontier of synthesis: Flow chemistry , 2016 .
[35] Dominique M. Roberge,et al. From Batch to Continuous Chemical Synthesis—A Toolbox Approach , 2014 .
[36] Carlos A. Dorao,et al. Modeling of Bubble Column Reactors: Progress and Limitations , 2005 .
[37] C. Heath,et al. Ultrafiltration of skim milk in flat-plate and spiral-wound modules , 1997 .
[38] M. Schultes,et al. Research on Mass Transfer Columns: passé? , 2013 .
[39] G. Froment,et al. Chemical Reactor Analysis and Design , 1979 .
[40] Hans Joachim Kantorek,et al. Einfluß der Reaktorgeometrie und des Gasverteilers auf das Strömungsbild in Blasensäulen , 1985 .
[41] Rajamani Krishna,et al. Scale Effects on the Hydrodynamics of Bubble Columns Operating in the Homogeneous Flow Regime , 2001 .
[42] Klaus Sattler,et al. Thermal Separation Processes: Principles and Design , 1995 .
[43] Marshall Gayton,et al. Robust scale-up of dead end filtration: impact of filter fouling mechanisms and flow distribution. , 2005, Biotechnology and bioengineering.
[44] Robert F. Mudde,et al. Intensifying The Fischer-Tropsch Synthesis By Reactor Structuring - A Model Study , 2012 .
[45] Eugeny Y. Kenig,et al. Micro-separation of fluid systems: A state-of-the-art review , 2013 .
[46] Patrick Löb. EU FP7 Project CoPIRIDE – towards new production and factory concepts for a sustainable and competitive European chemical industry , 2013 .
[47] Norbert Kockmann,et al. Industrial design, scale-up, and use of microreactors , 2009 .
[48] Marcus Grünewald,et al. Experimentelle Bestimmung des konvektiven Wärmeübergangs in einem mikrostrukturierten Kanal , 2017 .
[49] E. S. Tarleton,et al. Evaluation and comparison of protein ultrafiltration test results: dead-end stirred cell compared with a cross-flow system , 2008 .
[50] Andrew L. Zydney,et al. Improving dextran tests for ultrafiltration membranes: Effect of device format , 2007 .
[51] Scott D. Reynolds,et al. Sterilizing filtration—Principles and practice for successful scale-up to manufacturing , 2008 .
[52] Marcus Grünewald,et al. Development and characterization of a modular absorption column for transformable plants , 2015 .
[53] Norbert Kockmann,et al. Transport Phenomena in Micro Process Engineering , 2007 .
[54] Conan J. Fee,et al. Economics of wash strategies for expanded bed adsorption of proteins from milk with buoyancy-induced mixing , 2001 .
[55] Anders Rasmuson,et al. LDA measurements of liquid velocities in a refractive index matched packed bubble column , 2005 .
[56] Ventsislav Zimparov,et al. Energy conservation through heat transfer enhancement techniques , 2002 .
[57] Volker Hessel,et al. Novel process windows for enabling, accelerating, and uplifting flow chemistry. , 2013, ChemSusChem.
[58] Hartmut Schoenmakers,et al. Die Notwendigkeit einer Standardisierung von Stofftransportmessungen in der Ab‐ und Desorption , 2012 .
[59] Marcus Grünewald,et al. Mikrotrenntechnik: Entwicklungsstand und Perspektiven , 2008 .
[60] Holger Fröhlich,et al. Membrane Technology in Bioprocess Science , 2012 .
[61] T. Bieringer,et al. Future Production Concepts in the Chemical Industry: Modular – Small‐Scale – Continuous , 2013 .
[62] Michael Price,et al. How the filter press is meeting today's demands , 2001 .
[63] Sigurd Buchholz,et al. Future manufacturing approaches in the chemical and pharmaceutical industry , 2010 .
[64] M. C. Porter. Concentration Polarization with Membrane Ultrafiltration , 1972 .