Innovative scaling strategies for a fast development of apparatuses by modular process engineering

Abstract The process industries are facing multiple challenges like product differentiation, shorter life cycles and market volatilities. Transformable production concepts as an answer to these challenges need a fast development of apparatuses for a short time to market but traditional scaling strategies are time and cost consuming. In contrast, innovative scaling strategies by modular process engineering promise faster scaling with less effort. The innovative scaling strategies proposed in this article include a combination of sizing-up, equaling-up and numbering-up in three main pathways. These strategies are shown and applied to examples of heat transfer, reaction and separation tasks with fluid-fluid and fluid-solid phase boundary coming from different scales.

[1]  Anton A. Kiss,et al.  Gas holdup, axial dispersion, and mass transfer studies in bubble columns , 2012 .

[2]  Geoffrey F. Hewitt The Potential for Development in Heat Exchanger Plants , 1981 .

[3]  Vivek V. Ranade,et al.  Computational fluid dynamics for designing process equipment: Expectations, current status, and path forward , 2003 .

[4]  V. Hessel,et al.  Flow chemistry using milli- and microstructured reactors-from conventional to novel process windows. , 2010, Bioorganic & medicinal chemistry.

[5]  Marcus Grünewald,et al.  Net Present Value Analysis of Modular Chemical Production Plants , 2011 .

[6]  Willi Hofen,et al.  Scale‐up‐Probleme bei der experimentellen Verfahrensentwicklung , 1990 .

[7]  Marcus Grünewald,et al.  Modularisierung von Mikrotrennapparaten als Scale-up-Methode am Beispiel der Mikrodestillation , 2011 .

[8]  Achim Hoffmann,et al.  Standardization of Mass Transfer Measurements: A Basis for the Description of Absorption Processes , 2007 .

[9]  Marcus Grünewald,et al.  Erhöhung der Wirtschaftlichkeit durch beschleunigte Produkt‐ und Prozessentwicklung mit Hilfe modularer und skalierbarer Apparate , 2012 .

[10]  Harald Anlauf,et al.  Mechanische Flüssigkeitsabtrennung in der Lebensmittelverfahrenstechnik , 2008 .

[11]  Volker Hessel,et al.  Novel Process Windows – Gate to Maximizing Process Intensification via Flow Chemistry , 2009 .

[12]  Bahman Zohuri Similitude Theory and Applications , 2015 .

[13]  Stefan Lier,et al.  Real options-based evaluation model for transformable plant designs in the process industry , 2017 .

[14]  Volker Hessel,et al.  Potential Analysis of Smart Flow Processing and Micro Process Technology for Fastening Process Development: Use of Chemistry and Process Design as Intensification Fields , 2012 .

[15]  Milorad P. Dudukovic,et al.  Liquid backmixing in bubble columns and the axial dispersion coefficient , 1998 .

[16]  Thomas Richter,et al.  Mikroreaktoren — Ein neues,wirksames Werkzeug für dieReaktorentwicklung , 2000 .

[17]  R. van Reis,et al.  Linear scale ultrafiltration. , 1997, Biotechnology and bioengineering.

[18]  Ashfaq Shaikh,et al.  Scale-up of Bubble Column Reactors: A Review of Current State-of-the-Art , 2013 .

[19]  Karl Hölemann,et al.  Fluiddynamik und Stofftransport in gepackten Blasensäulen , 2005 .

[20]  Gerd Kaibel,et al.  Packungseinbauten – Neue Anwendungen bei Reaktivdestillationen und in Reaktoren† , 2003 .

[21]  Philip Biessey,et al.  Influence of Design Parameters on Hydrodynamics and Heat Transfer of a Modularized Millireactor , 2015 .

[22]  Marcus Grünewald,et al.  Beschreibung von Blasensäulen mithilfe von Kompartment‐Modellansätzen , 2013 .

[23]  Angélique Delafosse,et al.  CFD-based compartment model for description of mixing in bioreactors , 2014 .

[24]  Dr.-Ing. Detlev U. Ringer MEHRSTROM-WARMEAUSTAUSCHER ALS GELOTETE ALUMINIUM-PLATTENAPPARATE - STAND DES WISSENS , 1991 .

[25]  Arsam Behkish,et al.  HYDRODYNAMIC AND MASS TRANSFER PARAMETERS IN LARGE-SCALE SLURRY BUBBLE COLUMN REACTORS , 2005 .

[26]  Holger Löwe,et al.  Chemie in Mikrostrukturreaktoren , 2004 .

[27]  U. Böhm,et al.  Gas–liquid dispersions in structured packing with high-viscosity liquids , 2004 .

[28]  Renato Paludetto,et al.  Scale up of chemical reactors , 1997 .

[29]  David W. Agar,et al.  Einführung in die Technische Chemie , 2010 .

[30]  Henrik Hahn,et al.  An industrial view of process intensification , 2009 .

[31]  Gemma Ribera,et al.  Comparison of nanofiltration membranes’ performance in flat sheet and spiral wound configurations: a scale-up study , 2013 .

[32]  N. Kockmann,et al.  Microreactor Technology and Continuous Processes in the Fine Chemical and Pharmaceutical Industry: Is the Revolution Underway? , 2008 .

[33]  Gerhard Ruffert,et al.  Ein flexibles, mikrostrukturiertes Modul für die Desorption: Der High Efficiency Contactor , 2011 .

[34]  I. Rossetti,et al.  Chemical reaction engineering, process design and scale-up issues at the frontier of synthesis: Flow chemistry , 2016 .

[35]  Dominique M. Roberge,et al.  From Batch to Continuous Chemical Synthesis—A Toolbox Approach , 2014 .

[36]  Carlos A. Dorao,et al.  Modeling of Bubble Column Reactors: Progress and Limitations , 2005 .

[37]  C. Heath,et al.  Ultrafiltration of skim milk in flat-plate and spiral-wound modules , 1997 .

[38]  M. Schultes,et al.  Research on Mass Transfer Columns: passé? , 2013 .

[39]  G. Froment,et al.  Chemical Reactor Analysis and Design , 1979 .

[40]  Hans Joachim Kantorek,et al.  Einfluß der Reaktorgeometrie und des Gasverteilers auf das Strömungsbild in Blasensäulen , 1985 .

[41]  Rajamani Krishna,et al.  Scale Effects on the Hydrodynamics of Bubble Columns Operating in the Homogeneous Flow Regime , 2001 .

[42]  Klaus Sattler,et al.  Thermal Separation Processes: Principles and Design , 1995 .

[43]  Marshall Gayton,et al.  Robust scale-up of dead end filtration: impact of filter fouling mechanisms and flow distribution. , 2005, Biotechnology and bioengineering.

[44]  Robert F. Mudde,et al.  Intensifying The Fischer-Tropsch Synthesis By Reactor Structuring - A Model Study , 2012 .

[45]  Eugeny Y. Kenig,et al.  Micro-separation of fluid systems: A state-of-the-art review , 2013 .

[46]  Patrick Löb EU FP7 Project CoPIRIDE – towards new production and factory concepts for a sustainable and competitive European chemical industry , 2013 .

[47]  Norbert Kockmann,et al.  Industrial design, scale-up, and use of microreactors , 2009 .

[48]  Marcus Grünewald,et al.  Experimentelle Bestimmung des konvektiven Wärmeübergangs in einem mikrostrukturierten Kanal , 2017 .

[49]  E. S. Tarleton,et al.  Evaluation and comparison of protein ultrafiltration test results: dead-end stirred cell compared with a cross-flow system , 2008 .

[50]  Andrew L. Zydney,et al.  Improving dextran tests for ultrafiltration membranes: Effect of device format , 2007 .

[51]  Scott D. Reynolds,et al.  Sterilizing filtration—Principles and practice for successful scale-up to manufacturing , 2008 .

[52]  Marcus Grünewald,et al.  Development and characterization of a modular absorption column for transformable plants , 2015 .

[53]  Norbert Kockmann,et al.  Transport Phenomena in Micro Process Engineering , 2007 .

[54]  Conan J. Fee,et al.  Economics of wash strategies for expanded bed adsorption of proteins from milk with buoyancy-induced mixing , 2001 .

[55]  Anders Rasmuson,et al.  LDA measurements of liquid velocities in a refractive index matched packed bubble column , 2005 .

[56]  Ventsislav Zimparov,et al.  Energy conservation through heat transfer enhancement techniques , 2002 .

[57]  Volker Hessel,et al.  Novel process windows for enabling, accelerating, and uplifting flow chemistry. , 2013, ChemSusChem.

[58]  Hartmut Schoenmakers,et al.  Die Notwendigkeit einer Standardisierung von Stofftransportmessungen in der Ab‐ und Desorption , 2012 .

[59]  Marcus Grünewald,et al.  Mikrotrenntechnik: Entwicklungsstand und Perspektiven , 2008 .

[60]  Holger Fröhlich,et al.  Membrane Technology in Bioprocess Science , 2012 .

[61]  T. Bieringer,et al.  Future Production Concepts in the Chemical Industry: Modular – Small‐Scale – Continuous , 2013 .

[62]  Michael Price,et al.  How the filter press is meeting today's demands , 2001 .

[63]  Sigurd Buchholz,et al.  Future manufacturing approaches in the chemical and pharmaceutical industry , 2010 .

[64]  M. C. Porter Concentration Polarization with Membrane Ultrafiltration , 1972 .