Cryobionomics: Evaluating the Concept in Plant Cryopreservation

Cryopreservation at ultra-low temperatures is used for the long-term conservation of nonorthodox seeds and the germplasm of vegetatively propagated species. Advances in biomolecular or ‘omics’ technologies are creating a new knowledge base that provides insights into how to solve some of the more difficult cryobiological and conservation challenges. Before routinely implementing cryostorage, it is important to verify that it does not have any genotypic and/or phenotypic destabilising effects and that plants produced from cryopreserved germplasm are true-to-type. The evolving concept of ‘cryobionomics’ considers two practical aspects: (1) the linkage between cryoinjury and stability in vitro and (2) the behaviour and functionality of plants recovered from cryopreserved germplasm once they are reintroduced into natural environments. Cryobionomics is a working hypothesis that explores the emerging research evidence that connects causal factors related to cryoinjury and loss of viability to the risks of genetic instability. This paper presents the principles of cryopreservation and reviews contemporary omics research literature within the conceptual framework of cryobionomics. The aim is to explore the connections between stability and cryogenic/non-cryogenic stress factors with a view to aiding protocol improvement, optimisation and validation for plant genetic resources conservation.

[1]  E. T. Palva,et al.  Plant cold hardiness : gene regulation and genetic engineering , 2002 .

[2]  B. Panis Cryopreservation of Monocots , 2008 .

[3]  H. Matsumura,et al.  Functional genomics in a non-model crop: transcriptomics or proteomics? , 2008, Physiologia plantarum.

[4]  A. Sakai,et al.  Development of PVS-Based Vitrification and Encapsulation–Vitrification Protocols , 2008 .

[5]  S. Dussert,et al.  Development of probabilistic tools to assist in the establishment and management of cryopreserved plant germplasm collections. , 2003, Cryo letters.

[6]  Marcos Edel Martínez-Montero,et al.  CRYOPRESERVATION OF SUGARCANE EMBRYOGENIC CALLUS USING A SIMPLIFIED FREEZING PROCESS , 2020, 2008.09704.

[7]  E. Benson,et al.  Physical And Engineering Perspectives Of In Vitro Plant Cryopreservation , 2008 .

[8]  F. Engelmann Use of biotechnologies for the conservation of plant biodiversity , 2011, In Vitro Cellular & Developmental Biology - Plant.

[9]  M. E. Dulloo,et al.  Assessment of genetic and epigenetic changes following cryopreservation in papaya , 2008, Plant Cell Reports.

[10]  E. Benson,et al.  Thermal analysis of the plant encapsulation-dehydration cryopreservation protocol using silica gel as the desiccant. , 2005, Cryo letters.

[11]  S. Kobayashi,et al.  Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification , 1990, Plant Cell Reports.

[12]  Jenny Renaut,et al.  Proteome analysis of non-model plants: a challenging but powerful approach. , 2008, Mass spectrometry reviews.

[13]  E. Benson,et al.  Validation of cryopreservation protocols for plant germplasm conservation: a pilot study using Ribes L. , 2001, Biodiversity & Conservation.

[14]  Chung-Jui Tsai,et al.  Cryopreservation in Populus functional genomics. , 2004, The New phytologist.

[15]  M. Hajirezaei,et al.  Influence of alternating temperature preculture on cryopreservation results for potato shoot tips , 2008, Plant Cell Reports.

[16]  A. Cassells,et al.  Variation in potato microplant morphology in vitro and DNA methylation , 2002, Plant Cell, Tissue and Organ Culture.

[17]  T. Close Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins , 1996 .

[18]  P. Rein Prospects for the conversion of a sugar mill into a biorefinery. , 2007 .

[19]  Guy Cochrane,et al.  Concept of sample in OMICS technology. , 2006, Omics : a journal of integrative biology.

[20]  O. Schabenberger,et al.  Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. , 1998, Science.

[21]  K. Harding Genetic integrity of cryopreserved plant cells: a review. , 2004, Cryo letters.

[22]  B. Reed,et al.  Extended cold acclimation and recovery medium alteration improve regrowth of Rubus shoot tips following cryopreservation , 1999 .

[23]  B. Kaviani Conservation of plant genetic resources by cryopreservation. , 2011 .

[24]  F. Engelmann,et al.  Recent developments in cryopreservation of shoot apices of tropical species. , 2000 .

[25]  K. V. Nimmen,et al.  Cryopreservation of banana (Musa spp.) meristem cultures after preculture on sucrose , 1996 .

[26]  J. Baust Concepts in Biopreservation , 2006 .

[27]  M. Mansor Diversity and Conservation of Tropical Forestry Species in Southeast Asia , 2013 .

[28]  M. Normah,et al.  Conservation of Tropical Plant Species , 2013, Springer New York.

[29]  G. Hon,et al.  Next-generation genomics: an integrative approach , 2010, Nature Reviews Genetics.

[30]  Caroline Dean,et al.  Growth and development: a broad view of fine detail. , 2009, Current opinion in plant biology.

[31]  Richard A Dixon,et al.  Lignin modification improves fermentable sugar yields for biofuel production , 2007, Nature Biotechnology.

[32]  Erica E Benson,et al.  Evaluation of critical points in technology transfer of cryopreservation protocols to international plant conservation laboratories. , 2004, Cryo letters.

[33]  D. Klessig,et al.  MAPK cascades in plant defense signaling. , 2001, Trends in plant science.

[34]  R. L. Mancera,et al.  Cryopreservation of threatened native Australian species—what have we learned and where to from here? , 2011, In Vitro Cellular & Developmental Biology - Plant.

[35]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[36]  Detlef Weigel,et al.  Next-generation genetics in plants , 2008, Nature.

[37]  L. Withers,et al.  Freeze Preservation of Somatic Embryos and Clonal Plantlets of Carrot (Daucus carota L). , 1979, Plant physiology.

[38]  M. Faltus,et al.  Comparison of Cryopreservation Methods of Vegetatively Propagated Crops Based on Thermal Analysis , 2012 .

[39]  M. E. Dulloo,et al.  Ex situ and in situ conservation of agricultural biodiversity: major advances and research needs. , 2010 .

[40]  E. Benson,et al.  Cryoconservation of South African plant genetic diversity , 2011, In Vitro Cellular & Developmental Biology - Plant.

[41]  C. Walters,et al.  Longevity of cryogenically stored seeds. , 2004, Cryobiology.

[42]  Alan Paton,et al.  Biodiversity informatics and the plant conservation baseline. , 2009, Trends in plant science.

[43]  E. Benson,et al.  Oxidative stress in recalcitrant tissue cultures of grapevine. , 1994, Free radical biology & medicine.

[44]  F. Iren,et al.  A Two-Step or Equilibrium Freezing Procedure for the Cryopreservation of Plant Cell Suspensions , 1995 .

[45]  D. Dumet,et al.  Cryopreservation of oil palm (Elaeis guineensis Jacq.) somatic embryos involving a desiccation step , 1993, Plant Cell Reports.

[46]  M. Benito,et al.  Review. The use of cryopreservation for germplasm conservation of vegetatively propagated crops , 2004 .

[47]  David M. A. Martin,et al.  Genome sequence and analysis of the tuber crop potato , 2011, Nature.

[48]  E. Benson,et al.  Can Biospecimen Science Expedite the Ex Situ Conservation of Plants in Megadiverse Countries? A Focus on the Flora of Brazil , 2013 .

[49]  C. Huet CRYOPRESERVATION OF ENCAPSULATED APICES OF SUGARCANE: EFFECT OF FREEZING PROCEDURF: AND HISTOLOGY , 1993 .

[50]  F. Engelmann Importance of cryopreservation for the conservation of plant genetic resources. , 2000 .

[51]  C. Ndong,et al.  Cold-Regulated Cereal Chloroplast Late Embryogenesis Abundant-Like Proteins. Molecular Characterization and Functional Analyses , 2002, Plant Physiology.

[52]  B. Reed,et al.  Genetic and epigenetic stability of cryopreserved and cold-stored hops (Humulus lupulus L.). , 2008, Cryobiology.

[53]  J. Renaut,et al.  Proteomics and low-temperature studies : bridging the gap between gene expression and metabolism , 2006 .

[54]  H. Schumacher,et al.  Recovery of potato apices after several years of storage in liquid nitrogen. , 2003, Cryo letters.

[55]  E. Benson,et al.  Life in the Frozen State , 2007 .

[56]  Andrea Pitzschke,et al.  MAPK cascade signalling networks in plant defence. , 2009, Current opinion in plant biology.

[57]  H. Pritchard,et al.  Thermal analysis and cryopreservation of seeds of Australian wild Citrus species (rutaceae): Citrus australasica, C. inodora and C. garrawayi. , 2009, Cryo letters.

[58]  J. Fabre,et al.  Resistance to freezing in liquid nitrogen of carnation (Dianthus caryophyllus L. var Eolo) apical and axillary shoot tips excised from different aged in vitro plantlets , 1988, Plant Cell Reports.

[59]  J. Mundy,et al.  Mitogen-activated protein kinase signaling in plants. , 2010, Annual review of plant biology.

[60]  M. West,et al.  An integrative approach to characterize disease-specific pathways and their coordination: a case study in cancer , 2008, BMC Genomics.

[61]  Kazuki Saito,et al.  Cryopreservation and metabolic profiling analysis of Arabidopsis T87 suspension-cultured cells. , 2008, Cryo letters.

[62]  Prakash Lakshmanan,et al.  Sugarcane biotechnology: The challenges and opportunities , 2005, In Vitro Cellular & Developmental Biology - Plant.

[63]  F. Engelmann Plant cryopreservation: Progress and prospects , 2004, In Vitro Cellular & Developmental Biology - Plant.

[64]  E. Benson,et al.  Antioxidant status and genotypic tolerance of Ribes in vitro cultures to cryopreservation , 2007 .

[65]  Paul H. Moore,et al.  Production of biologically active GM-CSF in sugarcane: a secure biofactory , 2005, Transgenic Research.

[66]  A. Sakai,et al.  Survival of Tropical Apices Cooled to-196°C by Vitrification , 2002 .

[67]  Paul H. Li Plant Cold Hardiness , 2002, Springer US.

[68]  M. W. Yaish,et al.  Antifreeze proteins in overwintering plants: a tale of two activities. , 2004, Trends in plant science.

[69]  N. Bassil,et al.  Genetic stability of cryopreserved shoot tips of Rubus germplasm , 2010, In Vitro Cellular & Developmental Biology - Plant.

[70]  Yasuomi Ibaraki,et al.  Plant Tissue Culture Engineering , 2008 .

[71]  M. Rusanen,et al.  Cryopreservation of In Vitro Tissues of Deciduous Forest Trees , 2008 .

[72]  G. Volk Application of Functional Genomics and Proteomics to Plant Cryopreservation , 2010, Current genomics.

[73]  R. F. Curry,et al.  Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers , 2001, Plant Cell, Tissue and Organ Culture.

[74]  R. Grant-Downton,et al.  MicroRNA misregulation: an overlooked factor generating somaclonal variation? , 2011, Trends in plant science.

[75]  F. Engelmann In vitro conservation of tropical plant germplasm — a review , 1991, Euphytica.

[76]  J. Ulrich,et al.  Effects of cryoprotectants in combination on the survival of frozen sugarcane cells. , 1979, Plant physiology.

[77]  E. R. Joachim Keller,et al.  Cryopreservation for plant genebanks - a matter between high expectations and cautious reservation. , 2008, Cryo letters.

[78]  E. Benson,et al.  Effects of osmotic pretreatments on oxidative stress, antioxidant profiles and cryopreservation of olive somatic embryos. , 2011, Plant science : an international journal of experimental plant biology.

[79]  E. Benson Cryopreservation of Phytodiversity: A Critical Appraisal of Theory & Practice , 2008 .

[80]  Kil-Jae Lee,et al.  Acquired tolerance to temperature extremes. , 2003, Trends in plant science.

[81]  R. Swennen,et al.  Genomic changes associated with somaclonal variation in banana (Musa spp.) , 2007 .

[82]  F. Engelmann,et al.  Development of Encapsulation Dehydration , 2008 .

[83]  M. Melzer,et al.  Ultrastructural changes associated with cryopreservation of potato (Solanum tuberosum l.) shoot tips. , 2008, Cryo letters.

[84]  K. Laukens,et al.  Preparation of protein extracts from recalcitrant plant tissues: An evaluation of different methods for two‐dimensional gel electrophoresis analysis , 2005, Proteomics.

[85]  J. Verdeil,et al.  Somaclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis , 2000, Plant Cell Reports.

[86]  G. Stacey,et al.  Cryopreservation and Freeze-Drying Protocols , 1995, Methods in Molecular Biology™.

[87]  E. Benson,et al.  Detection of 8-hydroxy-2-deoxyguanosine as a marker of oxidative damage in DNA and germplasm exposed to cryogenic treatments. , 2010, Cryo letters.

[88]  V. Rokka,et al.  Potato Shoot Tip Cryopreservation. A Review , 2011, Potato Research.

[89]  Erica E Benson,et al.  Standard PREanalytical Codes: A New Paradigm for Environmental Biobanking Sectors Explored in Algal Culture Collections. , 2011, Biopreservation and biobanking.

[90]  K. Laukens,et al.  Banana (Musa spp.) as a model to study the meristem proteome: Acclimation to osmotic stress , 2007, Proteomics.

[91]  E. Benson,et al.  Evaluation of the 1-methyl-2-phenylindole colorimetric assay for aldehydic lipid peroxidation products in plants: malondialdehyde and 4-hydroxynonenal. , 2007, Plant physiology and biochemistry : PPB.

[92]  F. Engelmann,et al.  Development of cryopreservation techniques. , 2000 .

[93]  E. Benson,et al.  Biomarkers from Molecules to Ecosystems and Biobanks to Genebanks , 2013 .

[94]  K. Kartha Cryopreservation of Plant Cells and Organs , 1985 .

[95]  M. Mette,et al.  Influence of cryopreservation on the cytosine methylation state of potato genomic NDA. , 2010, Cryo letters.

[96]  Hanlee P. Ji,et al.  Next-generation DNA sequencing , 2008, Nature Biotechnology.

[97]  R. Strasser,et al.  Hyperhydricity of Micropropagated Shoots: A Typically Stress-induced Change of Physiological State , 2004, Plant Cell, Tissue and Organ Culture.

[98]  A. Thompson Banana (Musa spp.) , 2011 .

[99]  G. Volk,et al.  Gene expression in response to cryoprotectant and liquid nitrogen exposure in Arabidopsis shoot tips , 2011 .

[100]  M. Antolin,et al.  A cryopreservation protocol for embryos of the endangered species Zizania texana. , 2002, Cryo letters.

[101]  E. Bunn,et al.  Current Issues in Plant Cryopreservation , 2012 .

[102]  B. Panis,et al.  Cryopreservation of Musa germplasm , 1995 .

[103]  I. Katkov Current Frontiers in Cryopreservation , 2012 .

[104]  G. Tena,et al.  Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[105]  I. Katkov Current Frontiers in Cryobiology , 2014 .

[106]  J. Glaszmann,et al.  Developpement of a cryopreservation process for embryogenic calluses of a commercial hybrid of sugarcane Saccharum sp.) and application to different varieties , 1992 .

[107]  E. Benson,et al.  Optimisation of the azinobis-3-ethyl-benzothiazoline-6-sulphonic acid radical scavenging assay for physiological studies of total antioxidant activity in woody plant germplasm. , 2006, Plant physiology and biochemistry : PPB.

[108]  E. Benson,et al.  Translating cryobiology principles into trans-disciplinary storage guidelines for biorepositories and biobanks: a concept paper. , 2013, Cryo letters.

[109]  H. Schumacher,et al.  Cryopreservation of Chrysanthemum morifolium (Dendranthema grandiflora Ramat.) using different approaches , 2003, Plant Cell Reports.

[110]  P. Mazur Principles of Cryobiology , 2004 .

[111]  B. Fuller,et al.  Cryoprotectants: the essential antifreezes to protect life in the frozen state. , 2004, Cryo letters.

[112]  M. Smale,et al.  Molecular tools in plant genetic resources conservation: a guide to the technologies. , 1997 .

[113]  E. Benson,et al.  Cryopreservation of Plant Cells, Tissues and Organs , 2003 .

[114]  M. Thomashow,et al.  Arabidopsis Transcriptome Profiling Indicates That Multiple Regulatory Pathways Are Activated during Cold Acclimation in Addition to the CBF Cold Response Pathway Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1 , 2002, The Plant Cell Online.

[115]  Heather Knight,et al.  Abiotic stress signalling pathways: specificity and cross-talk. , 2001, Trends in plant science.

[116]  B. Reed Plant cryopreservation: a practical guide. , 2008 .

[117]  G. Elliott,et al.  Anhydrous preservation of Mammalian cells: cumulative osmotic stress analysis. , 2008, Biopreservation and biobanking.

[118]  D. Kami Cryopreservation of Plant Genetic Resources , 2012 .

[119]  R. Swennen,et al.  Change in sugar, sterol and fatty acid composition in banana meristems caused by sucrose-induced acclimation and its effects on cryopreservation , 2006 .

[120]  D. Ellis,et al.  Cryopreservation of Dormant Buds , 2008 .

[121]  E. Benson Plant Conservation Biotechnology , 2008 .

[122]  B. Reed,et al.  Controlled Rate Cooling , 2008 .

[123]  Chhandak Basu Gene amplification from cryopreserved Arabidopsis thaliana shoot tips. , 2008, Current issues in molecular biology.

[124]  M. Vicente,et al.  Molecular markers for genebank management , 2005 .

[125]  I. Vasil,et al.  Cryopreservation of immature embryos, embryogenic callus and cell suspension cultures of gramineous species , 1992 .

[126]  F. Vázquez-Flota,et al.  Plant Cell Culture Protocols , 2005, Methods in Molecular Biology.

[127]  G. J. Morris,et al.  Controlled ice nucleation in cryopreservation--a review. , 2013, Cryobiology.

[128]  E. Benson,et al.  Cryopreservation of shoot tips and meristems. , 2007, Methods in molecular biology.

[129]  J. V. Van Beeumen,et al.  Functional proteome analysis of the banana plant (Musa spp.) using de novo sequence analysis of derivatized peptides. , 2007, Journal of proteome research.

[130]  K. Akiyama,et al.  Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. , 2002, The Plant journal : for cell and molecular biology.

[131]  C. Miguel,et al.  An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. , 2011, Journal of experimental botany.

[132]  M. T. González-Arnao,et al.  Cryopreservation of plant germplasm using the encapsulation-dehydration technique: review and case study on sugarcane. , 2006, Cryo letters.

[133]  K. Kartha,et al.  In vitro Growth Responses and Plant Regeneration from Cryopreserved Meristems of Cassava (Manihot esculenta Crantz) , 1982 .

[134]  T. Close Dehydrins: A commonalty in the response of plants to dehydration and low temperature , 1997 .

[135]  Sershen,et al.  Cathodic amelioration of the adverse effects of oxidative stress accompanying procedures necessary for cryopreservation of embryonic axes of recalcitrant-seeded species , 2011, Seed Science Research.

[136]  F. Engelmann Status report on the development and application of in vitro techniques for the conservation and use of plant genetic resources , 1997 .

[137]  E. Benson,et al.  HPLC analysis of plant DNA methylation: a study of critical methodological factors. , 2005, Plant physiology and biochemistry : PPB.

[138]  Bin Wu 胚胎移植新进展 Advances In Embryo Transfer , 2012 .

[139]  C. J.A.,et al.  Biotechnology and Plant Genetic Resources , 1997 .

[140]  Takayuki Asano,et al.  Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. , 2004, DNA research : an international journal for rapid publication of reports on genes and genomes.

[141]  K. Harding,et al.  Effects of post-harvest storage of Allium sativum bulbs on the cryopreservation of stem-discs by encapsulation/dehydration , 2012 .

[142]  Robert Stevens,et al.  Gene Ontology Consortium , 2014 .

[143]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[144]  J. Glaszmann,et al.  Cryopreservation of apices of in vitro plantlets of sugarcane (Saccharum sp. hybrids) using encapsulation/dehydration , 1993, Plant Cell Reports.

[145]  E. Benson,et al.  Exploring the physiological basis of cryopreservation success and failure in clonally propagated in vitro crop plant germplasm , 2008 .

[146]  M. Ghislain,et al.  Clonal true-to-type verification of potato accessions retrieved from in vitro conservation and cryopreservation. , 2001 .

[147]  E. Keller Improvement of cryopreservation results in garlic using low temperature preculture and high-quality in vitro plantlets. , 2005, Cryo letters.

[148]  K. Koch,et al.  Carbon partitioning in sugarcane (Saccharum species) , 2013, Front. Plant Sci..

[149]  B. Haas,et al.  Insights into the Musa genome: Syntenic relationships to rice and between Musa species , 2008, BMC Genomics.

[150]  E. Čellárová,et al.  Genotype-dependent response of St. John's wort (Hypericum perforatum L.) shoot tips to cryogenic treatment: effect of pre-culture conditions on post-thaw recovery. , 2012 .

[151]  G. Volk,et al.  Plasmolysis and recovery of different cell types in cryoprotected shoot tips of Mentha × piperita , 2007, Protoplasma.

[152]  J. Baust Advances in Biopreservation , 2006 .

[153]  M. E. González-Benito,et al.  Survival and genetic stability of Dendranthema grandiflora Tzvelev shoot apices after cryopreservation by vitrification and encapsulation-dehydration. , 2005, Cryobiology.

[154]  E. Benson,et al.  Cryopreservation induces temporal DNA methylation epigenetic changes and differential transcriptional activity in Ribes germplasm. , 2009, Plant physiology and biochemistry : PPB.

[155]  M. Normah,et al.  Cryopreservation of Excised Embryos and Embryonic Axes , 2008 .

[156]  M. Lambardi,et al.  Status of cryopreservation technologies in plants (crops and forest trees). , 2005 .

[157]  A. Cassells,et al.  Stress and aberrant phenotypes in vitro culture , 2003, Plant Cell, Tissue and Organ Culture.

[158]  R. Rapley,et al.  Molecular Biomethods Handbook , 1998, Humana Press.

[159]  Charles W. Melnyk,et al.  siRNAs and DNA methylation: seedy epigenetics. , 2010, Trends in plant science.

[160]  K. Harding Plant and algal cryopreservation: issues in genetic integrity, concepts in cryobionomics and current applications in cryobiology , 2010 .

[161]  Marcos Edel Martínez-Montero,et al.  Cryopreservation of Tropical Plant Germplasm with Vegetative Propagation - Review of Sugarcane (Saccharum spp.) and Pineapple (Ananas comusus (L.) Merrill) Cases , 2012 .

[162]  R. E. Sharp,et al.  Activation of a Stress-Responsive Mitogen-Activated Protein Kinase Cascade Induces the Biosynthesis of Ethylene in Plants Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.011411. , 2003, The Plant Cell Online.

[163]  Viswanathan Chinnusamy,et al.  Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. , 2003, Journal of experimental botany.

[164]  I. Vasil,et al.  Plant regeneration from a cryopreserved embryogenic cell suspension of a commercial sugarcane hybrid (Saccharum sp.) , 1990, Plant Cell Reports.

[165]  H. Kim,et al.  'Personalisation' of droplet-vitrification protocols for plant cells: a systematic approach to optimising chemical and osmotic effects. , 2012, Cryo letters.

[166]  J. Callow,et al.  In vitro conservation methods. , 1997 .

[167]  R. Swennen,et al.  Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae , 2005 .

[168]  J. Ruane The Role of Biotechnology in Exploring and Protecting Agricultural Genetic Resources , 2007 .

[169]  E. Keller,et al.  Slow growth storage and cryopreservation—tools to facilitate germplasm maintenance of vegetatively propagated crops in living plant collections , 2006 .

[170]  T. Winkelmann,et al.  Comparing costs for different conservation strategies of garlic (Allium sativum L.) germplasm in genebanks , 2013, Genetic Resources and Crop Evolution.

[171]  N. Suzuki,et al.  Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction , 2006 .