A Singular Perturbation Problem for a Quasi-Linear Operator Satisfying the Natural Growth Condition of Lieberman

In this paper we study the following problem. For $\varepsilon>0$, take $u^{\varepsilon}$ as a solution of $\mathcal{L}u^{\varepsilon}:=\mathrm{div}\,(\frac{g(|\nabla u^{\varepsilon}|)}{|\nabla u^{\varepsilon}|}\nabla u^{\varepsilon})=\beta_{\varepsilon}(u^{\varepsilon})$, $u^{\varepsilon}\geq0$. A solution to $(P_{\varepsilon})$ is a function $u^{\varepsilon}\in W^{1,G}(\Omega)\cap L^{\infty}(\Omega)$ such that $\int_{\Omega}g(|\nabla u^{\varepsilon}|)\frac{\nabla u^{\varepsilon}}{|\nabla u^{\varepsilon}|}\nabla\varphi\,dx =-\int_{\Omega}\varphi\,\beta_{\varepsilon}(u^{\varepsilon})\,dx$ for every $\varphi\in C_0^{\infty}(\Omega)$. Here $\beta_{\varepsilon}(s)=\frac{1}{\varepsilon}\beta\left(\frac{s}{\varepsilon}\right)$, with $\beta\in\mathrm{Lip}(\mathbb{R})$, $\beta>0$ in $(0,1)$ and $\beta=0$ otherwise. We are interested in the limiting problem, when $\varepsilon\to 0$. As in previous work with $\mathcal{L}=\Delta$ or $\mathcal{L}=\Delta_p$ we prove, under appropriate assumptions, that any limiting f...

[1]  Klaus Schmitt,et al.  On Boundary Value Problems for Degenerate Quasilinear Elliptic Equations and Inequalities , 1998 .

[2]  L. Caffarelli A Harnack Inequality Approach to the Regularity of Free Boundaries. Part I: Lipschitz Free Boundaries are $C^{1, \alpha}$ , 1987 .

[3]  S. Salsa,et al.  Regularity of the free boundary in two-phase problems for linear elliptic operators , 2007 .

[4]  L. Caffarelli,et al.  A Geometric Approach to Free Boundary Problems , 2005 .

[5]  K. Schmitt REVISITING THE METHOD OF SUB- AND SUPERSOLUTIONS FOR NONLINEAR ELLIPTIC PROBLEMS , 2007 .

[6]  L. Caffarelli,et al.  Uniform estimates and limits for a two phase parabolic singular perturbation problem , 1997 .

[7]  S. Salsa,et al.  Two-Phase Problems for Linear Elliptic Operators with Variable Coefficients: Lipschitz Free Boundaries are C1,γ , 2004 .

[8]  L. Caffarelli,et al.  Pointwise and viscosity solutions for the limit of a two phase parabolic singular perturbation problem , 1997 .

[9]  E. Teixeira A variational treatment for general elliptic equations of the flame propagation type : regularity of the free boundary , 2008 .

[10]  N. Wolanski,et al.  A two phase elliptic singular perturbation problem with a forcing term , 2006 .

[11]  Gary M. Lieberman,et al.  The natural generalizationj of the natural conditions of ladyzhenskaya and uralľtseva for elliptic equations , 1991 .

[12]  A. Friedman,et al.  A free boundary problem for quasilinear elliptic equations , 1984 .

[13]  Gary M. Lieberman,et al.  Boundary regularity for solutions of degenerate elliptic equations , 1988 .

[14]  A. Petrosyan,et al.  A singular perturbation problem for the p-Laplace operator , 2003 .

[15]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[16]  Sandra Martínez An optimization problem with volume constraint in Orlicz spaces , 2007, 0706.4446.

[17]  L. Caffarelli A harnack inequality approach to the regularity of free boundaries , 1986 .

[18]  L. Caffarelli A Harnack inequality approach to the regularity of free boundaries part II: Flat free boundaries are Lipschitz , 1989 .

[19]  N. Wolanski,et al.  A MINIMUM PROBLEM WITH FREE BOUNDARY IN ORLICZ SPACES , 2006, math/0602388.

[20]  G. Weiss A singular limit arising in combustion theory: Fine properties of the free boundary , 2003 .

[21]  Luis A. Caffarelli,et al.  A free-boundary problem for the heat equation arising in flame propagation , 1995 .

[22]  Diego R. Moreira,et al.  A singular perturbation free boundary problem for elliptic equations in divergence form , 2007 .

[23]  N. Wolanski,et al.  Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem , 1998 .

[24]  J. B. Zeldowitsch,et al.  A Theory of Thermal Propagation of Flame , 1988 .

[25]  L. Caffarelli,et al.  Existence and regularity for a minimum problem with free boundary. , 1981 .