Multiple Solutions in Finite Element Model Updating

( p f Posterior probability distribution ) ( p g Likelihood probability distribution ) ( p h Prior probability distribution id j w The j-th identified natural frequency fe j w The j-th natural frequency of the finite element model id i j,  The i-th modal coordinate of the j-th identified mode shape fe i j.  The i-th modal coordinate of the j-th mode shape of the finite element id w j  The standard deviation of the j-th natural frequency identified id i Abstract Finite element models are idealistic representations of structures. They are used for testing the structures under conditions that for either technical or budget constraints cannot be reproduced physically. In order to guarantee that the numerical model is an accurate representation of the real structure, model updating should be performed. Information obtained from the actual structure is incomplete because of the limited number of sensors and

[1]  E. D. Brill,et al.  Modeling to Generate Alternatives: The HSJ Approach and an Illustration Using a Problem in Land Use Planning , 1982 .

[2]  G. Mendoza,et al.  Adapting modeling to generate alternatives (MGA) techniques to forest level planning , 1988 .

[3]  William L. Sprouse,et al.  Modeling to Generate Alternatives: A Shawnee National Forest example , 1990 .

[4]  John M. Flach,et al.  MGA: a decision support system for complex, incompletely defined problems , 1990, IEEE Trans. Syst. Man Cybern..

[5]  James G. Uber,et al.  Use of Mathematical Programming Methods for Complex Systems , 1992 .

[6]  John W. Baugh,et al.  A MATHEMATICAL PROGRAMMING APPROACH FOR GENERATING ALTERNATIVES IN DISCRETE STRUCTURAL OPTIMIZATION , 1997 .

[7]  C. Papadimitriou,et al.  A probabilistic approach to structural model updating , 1998 .

[8]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[9]  P. Andersen,et al.  Estimation of Modal Parameters and their Uncertainties , 1999 .

[10]  Lambros S. Katafygiotis,et al.  A BENCHMARK PROBLEM FOR STRUCTURAL HEALTH MONITORING AND DAMAGE DETECTION , 2000 .

[11]  S. Ranji Ranjithan,et al.  GENETIC ALGORITHM APPROACHES FOR ADDRESSING UNMODELED OBJECTIVES IN OPTIMIZATION PROBLEMS , 2001 .

[12]  Michael Link,et al.  WORKING GROUP 1: GENERATION OF VALIDATED STRUCTURAL DYNAMIC MODELS—RESULTS OF A BENCHMARK STUDY UTILISING THE GARTEUR SM-AG19 TEST-BED , 2003 .

[13]  Shirley J. Dyke,et al.  Experimental Phase II of the Structural Health Monitoring Benchmark Problem , 2003 .

[14]  Lambros S. Katafygiotis,et al.  Application of a Statistical Model Updating Approach on Phase I of the IASC-ASCE Structural Health Monitoring Benchmark Study , 2004 .

[15]  Emily M. Zechman,et al.  An evolutionary algorithm to generate alternatives (EAGA) for engineering optimization problems , 2004 .

[16]  Abhinav Gupta,et al.  Genetic Algorithm-Based Decision Support for Optimizing Seismic Response of Piping Systems , 2005 .

[17]  M. Friswell,et al.  Uncertainty identification by the maximum likelihood method , 2005 .

[18]  Shirley J. Dyke,et al.  Damage Detection Accommodating Varying Environmental Conditions , 2006 .

[19]  P. Andersen,et al.  Understanding Stochastic Subspace Identification , 2006 .

[20]  Boris A. Zárate,et al.  Finite element model updating: Multiple alternatives , 2008 .

[21]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .