Combinatory Models for Predicting the Effective Thermal Conductivity of Frozen and Unfrozen Food Materials

A model to predict the effective thermal conductivity of heterogeneous materials is proposed based on unit cell approach. The model is combined with four fundamental effective thermal conductivity models (Parallel, Series, Maxwell-Eucken-I, and Maxwell-Eucken-II) to evolve a unifying equation for the estimation of effective thermal conductivity of porous and nonporous food materials. The effect of volume fraction (ν) on the structure composition factor (ψ) of the food materials is studied. The models are compared with the experimental data of various foods at the initial freezing temperature. The effective thermal conductivity estimated by the Maxwell-Eucken-I + Present model shows good agreement with the experimental data with a minimum average deviation of ±8.66% and maximum deviation of ±42.76% of Series + Present Model. The combined models have advantages over other empirical and semiempirical models.

[1]  G. N. Dul’nev,et al.  The thermal conductivity of granular and weakly sintered materials , 1969 .

[2]  D. Kunii,et al.  Heat transfer characteristics of porous rocks , 1960 .

[3]  G. Batchelor,et al.  Thermal or electrical conduction through a granular material , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  A. Eucken,et al.  Allgemeine Gesetzmäßigkeiten für das Wärmeleitvermögen verschiedener Stoffarten und Aggregatzustände , 1940 .

[5]  G. Carotenuto,et al.  THE EFFECTIVE THERMAL CONDUCTIVITY OF PACKED BEDS OF SPHERES FOR A FINITE CONTACT AREA , 2000 .

[6]  O. Wiener,et al.  Die theorie des Mischkörpers für das Feld der stationären Strömung , 1912 .

[7]  J. Throne,et al.  Methods for predicting the thermal conductivity of composite systems: A review , 1976 .

[8]  J. Carson,et al.  Predicting the effective thermal conductivity of unfrozen, porous foods , 2006 .

[9]  H. Fricke,et al.  A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems I. The Electric Conductivity of a Suspension of Homogeneous Spheroids , 1924 .

[10]  Q. T. Pham,et al.  Thermal Conductivity of Fresh Lamb Meat, Offals and Fat in the Range ‐40 to +30oC: Measurements and Correlations , 1989 .

[11]  J. S. Boegli,et al.  An Investigation of Effective Thermal Conductivities of Powders in Various Gases , 1958, Journal of Fluids Engineering.

[12]  P. Karthikeyan,et al.  Estimating effective thermal conductivity of two-phase materials , 2006 .

[13]  COMPUTATION OF THE EFFECTIVE CONDUCTIVITY OF UNIDIRECTIONAL FIBROUS COMPOSITES WITH AN INTERFACIAL THERMAL RESISTANCE , 2001 .

[14]  Charles W. Tobias,et al.  Resistance to Potential Flow through a Cubical Array of Spheres , 1959 .

[15]  L. Rayleigh,et al.  LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .

[16]  F. L Levy,et al.  A modified Maxwell-Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures , 1981 .

[17]  Otto Krischer,et al.  Die wissenschaftlichen Grundlagen der Trocknungstechnik , 1956 .

[18]  Quasi-steady temperature gradient metamorphism in idealized, dry snow , 1994 .

[19]  R. Mascheroni,et al.  Extension of soil thermal conductivity models to frozen meats with low and high fat content , 2005 .

[20]  Chin Tsau Hsu,et al.  A Lumped-Parameter Model for Stagnant Thermal Conductivity of Spatially Periodic Porous Media , 1995 .

[21]  S. Lovatt,et al.  Additional thermal conductivity values of foods measured by a guarded hot plate , 1998 .

[22]  Donald J. Cleland,et al.  A new approach to modelling the effective thermal conductivity of heterogeneous materials , 2006 .

[23]  P. Karthikeyan,et al.  Effective conductivity estimation of binary metallic mixtures , 2007 .

[24]  P. Karthikeyan,et al.  Estimation of Effective Thermal Conductivity of Two-Phase Materials Using Collocated Parameter Model , 2009 .

[25]  I. Tavman,et al.  Measurement of thermal conductivity of dairy products , 1999 .