Low-angle target tracking using frequency-agile refined maximum likelihood algorithm

An Low-angle target tracking problem is investigated via the refined maximum likelihood (RML) algorithm. The results of the RML algorithm reveal that increasing the operating frequency of radar does not always reduce the mean-squared error (MSE) of angle estimate and thus an appropriate selection of the operating frequency can improve the angle estimation accuracy. Here, a frequency-agile RML algorithm is proposed, which adaptively adjusts the operating frequency during target tracking to minimize the MSEs of angle estimate. Theoretical analysis and simulation are made to verify the effectiveness of the frequency-agile RML algorithm.

[1]  Bin Rao,et al.  Elevation finding algorithm in beam domain under multi-path environments for VHF radar , 2013 .

[2]  Ilan Ziskind,et al.  Maximum likelihood localization of multiple sources by alternating projection , 1988, IEEE Trans. Acoust. Speech Signal Process..

[3]  J. Litva,et al.  Use of a highly deterministic multipath signal model in low-angle tracking , 1991 .

[4]  Thomas Kailath,et al.  On spatial smoothing for direction-of-arrival estimation of coherent signals , 1985, IEEE Trans. Acoust. Speech Signal Process..

[5]  Eloi Bosse,et al.  Tracking Swerling fluctuating targets at low altitude over the sea , 1991 .

[6]  D. K. Barton Low-angle radar tracking , 1974 .

[7]  Hongtao Su,et al.  Target and reflecting surface height joint estimation in low-angle radar , 2016 .

[8]  Joohwan Chun,et al.  Adaptive beamforming for low-angle target tracking under multipath interference , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Jen King Jao A matched array beamforming technique for low angle radar tracking in multipath , 1994, Proceedings of 1994 IEEE National Radar Conference.

[10]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[11]  S. Haykin,et al.  Cognitive radar: a way of the future , 2006, IEEE Signal Processing Magazine.

[12]  Petre Stoica,et al.  Low Angle Estimation: Models, Methods, and Bounds, , 2001, Digit. Signal Process..

[13]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[14]  Yaakov Bar-Shalom,et al.  Tracking with debiased consistent converted measurements versus EKF , 1993 .

[15]  Joohwan Chun,et al.  Low angle tracking using iterative multipath cancellation in sea surface environment , 2010, 2010 IEEE Radar Conference.

[16]  Kazufumi Hirata,et al.  Altitude estimation of low elevation target over the sea for surface based phased array radar , 2010, 2010 IEEE Radar Conference.

[17]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[18]  Eloi Bosse,et al.  Model-based multifrequency array signal processing for low-angle tracking , 1995 .

[19]  Gene H. Golub,et al.  The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate , 1972, Milestones in Matrix Computation.

[20]  S. Unnikrishna Pillai,et al.  Forward/backward spatial smoothing techniques for coherent signal identification , 1989, IEEE Trans. Acoust. Speech Signal Process..