Luminescence properties of a non-rare-earth doped oxyfluoride LiAl4O6F:Mn4+ red phosphor for solid-state lighting

[1]  Young-sik Cho,et al.  Origin of tunable emission wavelengths for (Sr 1-x Ca x ) 0.95 Ga 2 S 4 :0.05Eu and Sr 1-y Ga 2 S 4 :yEu phosphors , 2018, Journal of Alloys and Compounds.

[2]  W. Xiang,et al.  Red-emitting Sr2MgGe2O7:Mn4+ phosphors: Structure, luminescence properties, and application in warm white light emitting diodes , 2018, Journal of Alloys and Compounds.

[3]  S. Ye,et al.  An efficient and stable narrow band Mn4+-activated fluorotitanate red phosphor Rb2TiF6:Mn4+ for warm white LED applications , 2018 .

[4]  Jinxian Wang,et al.  Controlled Morphology, Improved Photoluminescent Properties, and Application of an Efficient Non-rare Earth Deep Red-Emitting Phosphor. , 2018, Inorganic chemistry.

[5]  Yongjun Yuan,et al.  Tunable Optical Properties and Enhanced Thermal Quenching of Non-Rare-Earth Double-Perovskite (Ba1- xSr x)2YSbO6:Mn4+ Red Phosphors Based on Composition Modulation. , 2018, Inorganic chemistry.

[6]  Z. Ji,et al.  Enhanced luminescence of a Ba2GdSbO6:Mn4+ red phosphor via cation doping for warm white light-emitting diodes. , 2018, Dalton transactions.

[7]  T. Jüstel,et al.  Composition dependent spectral shift of Mn4+ luminescence in silicate garnet hosts CaY2M2Al2SiO12 (M = Al, Ga, Sc) , 2018, Journal of Luminescence.

[8]  Xiaojing Wang,et al.  Inducing luminescent properties of Mn4+ in magnesium titanate systems: An experimental and theoretical approach , 2018, Journal of Alloys and Compounds.

[9]  C. Detavernier,et al.  Red Mn4+-Doped Fluoride Phosphors: Why Purity Matters. , 2018, ACS applied materials & interfaces.

[10]  Jun Lin,et al.  A narrow-band red-emitting K2LiGaF6:Mn4+ phosphor with octahedral morphology: Luminescent properties, growth mechanisms, and applications , 2018 .

[11]  Jun Lin,et al.  Designed synthesis, morphology evolution and enhanced photoluminescence of a highly efficient red dodec-fluoride phosphor, Li3Na3Ga2F12:Mn4+, for warm WLEDs , 2018 .

[12]  H. Seo,et al.  Excitation power dependent optical temperature behaviors in Mn4+ doped oxyfluoride Na2WO2F4. , 2018, Physical chemistry chemical physics : PCCP.

[13]  Qiying Peng,et al.  Photoluminescence properties of broadband deep-red-emitting Na2MgAl10O17:Mn4+ phosphor , 2017 .

[14]  Y. Gao,et al.  A highly-distorted octahedron with a C2v group symmetry inducing an ultra-intense zero phonon line in Mn4+-activated oxyfluoride Na2WO2F4 , 2017 .

[15]  Y. Matsushima,et al.  Fe3+ red phosphors based on lithium aluminates and an aluminum lithium oxyfluoride prepared from LiF as the Li Source , 2017 .

[16]  Yuansheng Wang,et al.  Non-Rare-Earth BaMgAl10–2xO17:xMn4+,xMg2+: A Narrow-Band Red Phosphor for Use as a High-Power Warm w-LED , 2016 .

[17]  Jun Lin,et al.  Recent progress in luminescence tuning of Ce(3+) and Eu(2+)-activated phosphors for pc-WLEDs. , 2015, Chemical Society reviews.

[18]  Yihua Hu,et al.  Preparation, Design, and Characterization of the Novel Long Persistent Phosphors: Na2ZnGeO4 and Na2ZnGeO4:Mn2+ , 2015 .

[19]  Wolfgang Schnick,et al.  A revolution in lighting. , 2015, Nature materials.

[20]  Xuewen Yin,et al.  Site Occupancy Preference, Enhancement Mechanism, and Thermal Resistance of Mn4+ Red Luminescence in Sr4Al14O25: Mn4+ for Warm WLEDs , 2015 .

[21]  Ru‐Shi Liu,et al.  Synthesis of Na2SiF6:Mn4+ red phosphors for white LED applications by co-precipitation , 2014 .

[22]  Xiaoyong Huang Red phosphor converts white LEDs , 2014, Nature Photonics.

[23]  Angela S. Wochnik,et al.  Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material. , 2014, Nature materials.

[24]  Ru‐Shi Liu,et al.  Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes , 2014, Nature Communications.

[25]  M. Du Chemical trends of Mn4+ emission in solids , 2014 .

[26]  Xuewen Yin,et al.  Orderly-Layered Tetravalent Manganese-Doped Strontium Aluminate Sr4Al14O25:Mn4+: An Efficient Red Phosphor for Warm White Light Emitting Diodes , 2013 .

[27]  Ru‐Shi Liu,et al.  Neighboring-cation substitution tuning of photoluminescence by remote-controlled activator in phosphor lattice. , 2013, Journal of the American Chemical Society.

[28]  Jianqing Jiang,et al.  Temperature‐Dependent Photoluminescence Properties of Deep‐Red Emitting Mn4+‐Activated Magnesium Fluorogermanate Phosphors. , 2013 .

[29]  Jun Lin,et al.  Tunable luminescence and energy transfer properties of Sr₃AlO₄F:RE³+ (RE = Tm/Tb, Eu, Ce) phosphors. , 2011, ACS applied materials & interfaces.

[30]  S. Denbaars,et al.  Efficient and Color‐Tunable Oxyfluoride Solid Solution Phosphors for Solid‐State White Lighting , 2011, Advanced materials.

[31]  T. L. Mercier,et al.  Structural and Photoluminescent Properties of Zn2SiO4:Mn2+ Nanoparticles Prepared by a Protected Annealing Process , 2011 .

[32]  Anirudh Deshpande,et al.  Energy-Efficient, High-Color-Rendering LED Lamps Using Oxyfluoride and Fluoride Phosphors , 2010 .

[33]  S. Denbaars,et al.  Sr2.975−xBaxCe0.025AlO4F: a Highly Efficient Green-Emitting Oxyfluoride Phosphor for Solid State White Lighting , 2010 .

[34]  S. Okamoto,et al.  Luminescent-Efficiency Improvement by Alkaline-Earth Fluorides Partially Replacing MgO in 3.5MgO⋅0.5MgF2⋅GeO2 : Mn4 + Deep-Red Phosphors for Light Emitting Diodes , 2010 .

[35]  S. Fujihara,et al.  Chemical processing for inorganic fluoride and oxyfluoride materials having optical functions , 2009 .

[36]  N. Kijima,et al.  Preparation of CaAlSiN3:Eu2+ Phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties , 2007 .

[37]  Mamoru Mitomo,et al.  2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors , 2007 .

[38]  N. Hirosaki,et al.  Host lattice materials in the system Ca3N2–AlN–Si3N4 for white light emitting diode , 2006 .

[39]  J. Steen,et al.  Luminescence properties of red-emitting M2Si5N8:Eu2+ (M = Ca, Sr, Ba) LED conversion phosphors , 2006 .

[40]  K. Morinaga,et al.  Fluorescence properties of Mn4+ in CaAl12O19 compounds as red-emitting phosphor for white LED , 2005 .

[41]  M. Morita,et al.  Photoluminescence and decay profiles of undoped and Fe3+, Eu3+-doped PLZT ceramics at low temperatures down to 10 K , 2000 .

[42]  G. Blasse,et al.  Energy transfer between inequivalent Eu2+ ions , 1986 .

[43]  P. Uylings,et al.  Energies of N equivalent electrons expressed in terms of two-electron energies and independent three-electron parameters: a new complete set of orthogonal operators. III. Ab initio calculations , 1984 .

[44]  W. White,et al.  Manganese‐Activated Luminescence in SrAl12 O 19 and CaAl12 O 19 , 1971 .

[45]  N. Matwiyoff,et al.  The electronic spectrum of cesium hexafluoromanganese(IV) , 1971 .

[46]  N. Elliott Magnetic Moments of V2+, Cr3+, and Mn4+ Ions in Octahedral Ligand Fields , 1967 .

[47]  Y. Tanabe,et al.  On the Absorption Spectra of Complex Ions II , 1954 .

[48]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[49]  M. Brik,et al.  Influence of Covalency on the Mn4+ 2Eg→4A2g Emission Energy in Crystals , 2015 .

[50]  M. Brik,et al.  Electronic Energy Levels of the Mn4+ Ion in the Perovskite, CaZrO3 , 2013 .

[51]  M. Brik,et al.  On the optical properties of the Mn4+ ion in solids , 2013 .

[52]  Y. Tanabe,et al.  On the absorption spectra of complex ions. II , 2002 .

[53]  B. Henderson,et al.  Optical spectroscopy of inorganic solids , 1989 .