Raman investigation of air-stable silicene nanosheets on an inert graphite surface

[1]  T. Xu,et al.  Resolving the Controversial Existence of Silicene and Germanene Nanosheets Grown on Graphite. , 2018, ACS nano.

[2]  Q. Yao,et al.  Intercalation of Si between MoS2 layers , 2017, Beilstein journal of nanotechnology.

[3]  I. Berbezier,et al.  Formation of Silicene Nanosheets on Graphite. , 2016, ACS nano.

[4]  I. Berbezier,et al.  van der Waals Heteroepitaxy of Germanene Islands on Graphite. , 2016, The journal of physical chemistry letters.

[5]  Yi Du,et al.  Quasi-freestanding epitaxial silicene on Ag(111) by oxygen intercalation , 2016, Science Advances.

[6]  M. Katsnelson,et al.  Structural and Electronic Properties of Germanene on MoS_{2}. , 2016, Physical review letters.

[7]  Patrick Vogt,et al.  2D vibrational properties of epitaxial silicene on Ag(111) , 2016, 1605.01593.

[8]  Madan Dubey,et al.  Silicene field-effect transistors operating at room temperature. , 2015, Nature nanotechnology.

[9]  Yi Du,et al.  Investigation of electron-phonon coupling in epitaxial silicene by in situ Raman spectroscopy , 2015, 1502.04509.

[10]  C. Ottaviani,et al.  24 h stability of thick multilayer silicene in air , 2014 .

[11]  Daniele Chiappe,et al.  Two‐Dimensional Si Nanosheets with Local Hexagonal Structure on a MoS2 Surface , 2014, Advanced materials.

[12]  Daniele Chiappe,et al.  Vibrational properties of epitaxial silicene layers on (111) Ag , 2014 .

[13]  M. Chou,et al.  Stability and electronic properties of two-dimensional silicene and germanene on graphene , 2013, 1312.2329.

[14]  Clas Persson,et al.  Interlayer interactions in graphites , 2013, Scientific Reports.

[15]  Jia-An Yan,et al.  Electron-Phonon Coupling in Two-Dimensional Silicene and Germanene , 2013, 1308.4591.

[16]  P. Borowicz,et al.  Deep-ultraviolet Raman investigation of silicon oxide: thin film on silicon substrate versus bulk material , 2012 .

[17]  Patrick Vogt,et al.  Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.

[18]  J. Yates,et al.  Vacancy clusters as entry ports for cesium intercalation in graphite , 2011 .

[19]  G. Faraci,et al.  Quantum confinement and thermal effects on the Raman spectra of Si nanocrystals , 2009 .

[20]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[21]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[22]  P. Genésio,et al.  Theoretical and experimental characterization of damaged graphite surfaces , 2007 .

[23]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[24]  U Zeitler,et al.  Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.

[25]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[26]  R. Dovesi,et al.  The vibrational frequencies of forsterite Mg2SiO4: an all-electron ab initio study with the CRYSTAL code , 2006 .

[27]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[28]  Bartolomeo Civalleri,et al.  CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals , 2005 .

[29]  R. Orlando,et al.  Vibration Frequencies of Mg3Al2Si3O12 Pyrope. An ab initio study with the CRYSTAL code. , 2005, The journal of physical chemistry. B.

[30]  R. Orlando,et al.  Calculation of the vibration frequencies of α‐quartz: The effect of Hamiltonian and basis set , 2004, J. Comput. Chem..

[31]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[32]  Bartolomeo Civalleri,et al.  The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code , 2004, J. Comput. Chem..

[33]  S. Erkoç,et al.  Structural and electronic properties of bare and hydrogenated silicon clusters , 2001 .

[34]  P. Scheier,et al.  Growth of silicon nanostructures on graphite , 2000 .

[35]  R. Orlando,et al.  VOH center in magnesium oxide: an ab initio supercell study , 2000 .

[36]  M. Broyer,et al.  Nanostructured silicon films obtained by neutral cluster depositions , 1997 .

[37]  Hiroshi Harima,et al.  Raman Investigation of SiC Polytypes , 1997 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  Saunders,et al.  Static lattice and electron properties of MgCO3 (magnesite) calculated by ab initio periodic Hartree-Fock methods. , 1993, Physical review. B, Condensed matter.

[40]  M. Jarrold,et al.  Chemistry of semiconductor clusters: Large silicon clusters are much less reactive towards oxygen than the bulk , 1990 .

[41]  Roberto Dovesi,et al.  Ab initio approach to molecular crystals: A periodic Hartree–Fock study of crystalline urea , 1990 .

[42]  Himpsel,et al.  Microscopic structure of the SiO2/Si interface. , 1988, Physical review. B, Condensed matter.

[43]  F. J. Himpsel,et al.  Microscopic structure of the SiO 2 /Si interface , 1988 .

[44]  P. Temple,et al.  Multiphonon Raman Spectrum of Silicon , 1973 .

[45]  Donald W. Feldman,et al.  Raman Scattering by Silicon and Germanium , 1967 .

[46]  G. Pourtois,et al.  Vibrational properties of silicene and germanene , 2012, Nano Research.

[47]  R. Orlando,et al.  Calculation of the vibration frequencies of alpha-quartz: the effect of Hamiltonian and basis set. , 2004, Journal of computational chemistry.