An Integrated Approach Reveals Regulatory Controls on Bacterial Translation Elongation

[1]  David H Burkhardt,et al.  Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources , 2014, Cell.

[2]  K. Keiler,et al.  Resolving Nonstop Translation Complexes Is a Matter of Life or Death , 2014, Journal of bacteriology.

[3]  Hernan G. Garcia,et al.  Supplemental Information The Transcription Factor Titration Effect Dictates Level of Gene Expression , 2014 .

[4]  Rachel Green,et al.  Dom34 Rescues Ribosomes in 3′ Untranslated Regions , 2014, Cell.

[5]  Zachary A. King,et al.  Constraint-based models predict metabolic and associated cellular functions , 2014, Nature Reviews Genetics.

[6]  E. O’Shea,et al.  A serine sensor for multicellularity in a bacterium , 2013, eLife.

[7]  J. Plotkin,et al.  Rate-Limiting Steps in Yeast Protein Translation , 2013, Cell.

[8]  Edoardo M Airoldi,et al.  Estimating selection on synonymous codon usage from noisy experimental data. , 2013, Molecular biology and evolution.

[9]  C. Burge,et al.  Widespread regulation of translation by elongation pausing in heat shock , 2013, Molecular cell.

[10]  Shu-Bing Qian,et al.  Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. , 2013, Molecular cell.

[11]  Tao Pan,et al.  Environmental perturbations lift the degeneracy of the genetic code to regulate protein levels in bacteria , 2012, Proceedings of the National Academy of Sciences.

[12]  M. Stead,et al.  RNAsnap™: a rapid, quantitative and inexpensive, method for isolating total RNA from bacteria , 2012, Nucleic acids research.

[13]  R. Green,et al.  Translation drives mRNA quality control , 2012, Nature Structural &Molecular Biology.

[14]  Gene-Wei Li,et al.  The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria , 2012, Nature.

[15]  Jianzhi Zhang,et al.  Balanced Codon Usage Optimizes Eukaryotic Translational Efficiency , 2012, PLoS genetics.

[16]  J. Weissman,et al.  Selective Ribosome Profiling Reveals the Cotranslational Chaperone Action of Trigger Factor In Vivo , 2011, Cell.

[17]  Hani S. Zaher,et al.  A Primary Role for Release Factor 3 in Quality Control during Translation Elongation in Escherichia coli , 2011, Cell.

[18]  C. Hayes,et al.  tmRNA regulates synthesis of the ArfA ribosome rescue factor , 2011, Molecular microbiology.

[19]  T. Abo,et al.  Escherichia coli YaeJ protein mediates a novel ribosome‐rescue pathway distinct from SsrA‐ and ArfA‐mediated pathways , 2011, Molecular microbiology.

[20]  T. Abo,et al.  Ribosome rescue by Escherichia coli ArfA (YhdL) in the absence of trans‐translation system , 2010, Molecular microbiology.

[21]  Y. Pilpel,et al.  An Evolutionarily Conserved Mechanism for Controlling the Efficiency of Protein Translation , 2010, Cell.

[22]  J. Yewdell,et al.  Innate Immune and Chemically Triggered Oxidative Stress Modifies Translational Fidelity , 2009, Nature.

[23]  Alan Villalobos,et al.  Design Parameters to Control Synthetic Gene Expression in Escherichia coli , 2009, PloS one.

[24]  David Tollervey,et al.  Coding-Sequence Determinants of Gene Expression in Escherichia coli , 2009, Science.

[25]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[26]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[27]  P. Dennis,et al.  Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates , 2008, EcoSal Plus.

[28]  Claus O. Wilke,et al.  Mistranslation-Induced Protein Misfolding as a Dominant Constraint on Coding-Sequence Evolution , 2008, Cell.

[29]  C. Hayes,et al.  Amino acid starvation and colicin D treatment induce A-site mRNA cleavage in Escherichia coli. , 2008, Journal of molecular biology.

[30]  H. Aiba,et al.  Cleavage of mRNAs and role of tmRNA system under amino acid starvation in Escherichia coli , 2008, Molecular microbiology.

[31]  Hendrik J. Viljoen,et al.  Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis , 2007, Comput. Biol. Chem..

[32]  R. Sauer,et al.  The tmRNA system for translational surveillance and ribosome rescue. , 2007, Annual review of biochemistry.

[33]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[34]  C. Hayes,et al.  Prolyl-tRNAPro in the A-site of SecM-arrested Ribosomes Inhibits the Recruitment of Transfer-messenger RNA* , 2006, Journal of Biological Chemistry.

[35]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[36]  J. Elf,et al.  Over expression of a tRNA(Leu) isoacceptor changes charging pattern of leucine tRNAs and reveals new codon reading. , 2005, Journal of molecular biology.

[37]  Robert T Sauer,et al.  Ribosome rescue: tmRNA tagging activity and capacity in Escherichia coli , 2005, Molecular microbiology.

[38]  M. Ehrenberg,et al.  tmRNA-induced release of messenger RNA from stalled ribosomes. , 2005, Journal of molecular biology.

[39]  J. Elf,et al.  Selective charging of tRNA isoacceptors induced by amino‐acid starvation , 2005, EMBO reports.

[40]  M. Rodnina,et al.  Mechanisms of elongation on the ribosome: dynamics of a macromolecular machine. , 2004, Biochemical Society transactions.

[41]  S. Govindarajan,et al.  Codon bias and heterologous protein expression. , 2004, Trends in biotechnology.

[42]  M. Ehrenberg,et al.  Ribosome rescue by tmRNA requires truncated mRNAs. , 2004, Journal of molecular biology.

[43]  J. Elf,et al.  Selective Charging of tRNA Isoacceptors Explains Patterns of Codon Usage , 2003, Science.

[44]  M. Ehrenberg,et al.  Free RNA polymerase and modeling global transcription in Escherichia coli. , 2003, Biochimie.

[45]  T. Abo,et al.  SsrA‐mediated protein tagging in the presence of miscoding drugs and its physiological role in Escherichia coli , 2002, Genes to cells : devoted to molecular & cellular mechanisms.

[46]  R. Sauer,et al.  Identification of Endogenous SsrA-tagged Proteins Reveals Tagging at Positions Corresponding to Stop Codons* , 2001, The Journal of Biological Chemistry.

[47]  M. Sørensen,et al.  Charging levels of four tRNA species in Escherichia coli Rel(+) and Rel(-) strains during amino acid starvation: a simple model for the effect of ppGpp on translational accuracy. , 2001, Journal of molecular biology.

[48]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Wolfgang,et al.  Charged tmRNA but not tmRNA‐mediated proteolysis is essential for Neisseria gonorrhoeae viability , 2000, The EMBO journal.

[50]  Ed Zintel,et al.  Resources , 1998, IT Prof..

[51]  H. Bujard,et al.  Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. , 1997, Nucleic acids research.

[52]  C. Kurland,et al.  Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. , 1996, Journal of molecular biology.

[53]  M. Ehrenberg,et al.  Rate of translation of natural mRNAs in an optimized in vitro system. , 1996, Archives of biochemistry and biophysics.

[54]  R. Sauer,et al.  Role of a Peptide Tagging System in Degradation of Proteins Synthesized from Damaged Messenger RNA , 1996, Science.

[55]  E. Goldman,et al.  Clustering of low usage codons and ribosome movement. , 1994, Journal of theoretical biology.

[56]  M. Ehrenberg,et al.  Mutations in 23 S ribosomal RNA perturb transfer RNA selection and can lead to streptomycin dependence. , 1994, Journal of molecular biology.

[57]  M. Sørensen,et al.  Synthesis of proteins in Escherichia coli is limited by the concentration of free ribosomes. Expression from reporter genes does not always reflect functional mRNA levels. , 1993, Journal of molecular biology.

[58]  M. Dreyfus,et al.  Translation initiation in Escherichia coli: old and new questions , 1990, Molecular microbiology.

[59]  C. Kurland,et al.  Codon preferences in free-living microorganisms. , 1990, Microbiological reviews.

[60]  P. Walter,et al.  Ribosome pausing and stacking during translation of a eukaryotic mRNA. , 1988, The EMBO journal.

[61]  R. Lloubès,et al.  Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. , 1984, Journal of molecular biology.

[62]  C. L. Harris,et al.  Two kinetically distinct tRNAile isoacceptors in Escherichia coli C6. , 1980, Nucleic acids research.

[63]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[64]  F. Neidhardt,et al.  Culture Medium for Enterobacteria , 1974, Journal of bacteriology.

[65]  D. Söll,et al.  A comparative study of the interactions of Escherichia coli leucyl-, seryl-, and valyl-transfer ribonucleic acid synthetases with their cognate transfer ribonucleic acids. , 1971, The Journal of biological chemistry.

[66]  G. Stent,et al.  Intracellular condition of Escherichia coli transfer RNA. , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[67]  C. Florentz,et al.  Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems. , 2004, Biochimie.

[68]  Johan Elf,et al.  Intracellular Flows and Fluctuations , 2004 .