Transport of hot carriers in plasmonic nanostructures

Plasmonic hot carrier devices extract excited carriers from metal nanostructures before equilibration, and have the potential to surpass semiconductor light absorbers. However their efficiencies have so far remained well below theoretical limits, which necessitates quantitative prediction of carrier transport and energy loss in plasmonic structures to identify and overcome bottlenecks in carrier harvesting. Here, we present a theoretical and computational framework, Non-Equilibrium Scattering in Space and Energy (NESSE), to predict the spatial evolution of carrier energy distributions that combines the best features of phase-space (Boltzmann) and particle-based (Monte Carlo) methods. Within the NESSE framework, we bridge first-principles electronic structure predictions of plasmon decay and carrier collision integrals at the atomic scale, with electromagnetic field simulations at the nano- to mesoscale. Finally, we apply NESSE to predict spatially-resolved energy distributions of photo-excited carriers that impact the surface of experimentally realizable plasmonic nanostructures at length scales ranging from tens to several hundreds of nanometers, enabling first-principles design of hot carrier devices.

[1]  Derui Liu,et al.  ACC , 2020, Catalysis from A to Z.

[2]  N. Melosh,et al.  Plasmonic energy collection through hot carrier extraction. , 2011, Nano letters.

[3]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[4]  Stephan Kümmel,et al.  Charge‐Transfer Excitations: A Challenge for Time‐Dependent Density Functional Theory That Has Been Met , 2017 .

[5]  R. Sundararaman,et al.  The electrical resistivity of rough thin films: A model based on electron reflection at discrete step edges , 2018 .

[6]  King,et al.  Optically driven surface reactions: Evidence for the role of hot electrons. , 1988, Physical review letters.

[7]  R. Sundararaman,et al.  Effects of Interlayer Coupling on Hot‐Carrier Dynamics in Graphene‐Derived van der Waals Heterostructures , 2016, 1612.08196.

[8]  G. Weick,et al.  Retardation effects on the dispersion and propagation of plasmons in metallic nanoparticle chains , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Plasmon-assisted quantum entanglement , 2002, QELS 2002.

[10]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[11]  Dong Ha Kim,et al.  Plasmonic Hot Carriers Imaging: Promise and Outlook , 2018, ACS Photonics.

[12]  Radiative frequency shifts in nanoplasmonic dimers , 2017, 1705.04492.

[13]  Ravishankar Sundararaman,et al.  Experimental and Ab Initio Ultrafast Carrier Dynamics in Plasmonic Nanoparticles. , 2016, Physical review letters.

[14]  Ravishankar Sundararaman,et al.  Plasmonic hot electron transport drives nano-localized chemistry , 2017, Nature Communications.

[15]  G. Stefanucci,et al.  Time-dependent quantum transport: An exact formulation based on TDDFT , 2004, cond-mat/0402094.

[16]  K. Binder Monte Carlo methods in statistical physics , 1979 .

[17]  L. Hedin,et al.  Effects of Electron-Electron and Electron-Phonon Interactions on the One-Electron States of Solids , 1969 .

[18]  Ravishankar Sundararaman,et al.  Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. , 2016, ACS nano.

[19]  T. Tatsuma,et al.  Solid state photovoltaic cells based on localized surface plasmon-induced charge separation , 2011 .

[20]  L. Pitchford,et al.  Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models , 2005 .

[21]  G. Stefanucci,et al.  First-principles nonequilibrium Green's-function approach to transient photoabsorption: Application to atoms , 2015, 1507.05590.

[22]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[23]  J. R. Adleman,et al.  Heterogenous catalysis mediated by plasmon heating. , 2009, Nano letters.

[24]  Nathan S. Lewis,et al.  Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates , 2014 .

[25]  M. Thoss,et al.  Perspective: Theory of quantum transport in molecular junctions. , 2018, The Journal of chemical physics.

[26]  K. Berggren,et al.  Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas. , 2017, Nano letters.

[27]  J. Ziman Principles of the Theory of Solids , 1965 .

[28]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[29]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[30]  Peter Nordlander,et al.  Plasmon-induced hot carriers in metallic nanoparticles. , 2014, ACS nano.

[31]  Vikram L. Dalal,et al.  Simple Model for Internal Photoemission , 1971 .

[32]  William A. Goddard,et al.  Ab initio phonon coupling and optical response of hot electrons in plasmonic metals , 2016, 1602.00625.

[33]  Kazuyuki Hirao,et al.  Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system , 1998 .

[34]  Nianqiang Wu,et al.  Plasmon-Enhanced Solar Energy Harvesting , 2013 .

[35]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[36]  G. Wiederrecht,et al.  Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. , 2015, Nature nanotechnology.

[37]  Ravishankar Sundararaman,et al.  Theoretical predictions for hot-carrier generation from surface plasmon decay , 2014, Nature Communications.

[38]  Shengbai Zhang,et al.  The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures , 2016, Nature Communications.

[39]  Yuyuan Tian,et al.  Electron transport in single molecules: from benzene to graphene. , 2009, Accounts of chemical research.

[40]  Gianluca Stefanucci,et al.  Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction , 2013 .

[41]  M. S. Tame,et al.  Quantum Plasmonics , 2013 .

[42]  Lin-wang Wang,et al.  Interplay between plasmon and single-particle excitations in a metal nanocluster , 2015, Nature Communications.

[43]  J. Golovchenko A few analytical solutions to the linear Boltzmann transport equation with an application to channeling , 1976 .

[44]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[45]  Artur R. Davoyan,et al.  Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices , 2017, Nature Communications.

[46]  Kathleen A. Schwarz,et al.  JDFTx: Software for joint density-functional theory , 2017, SoftwareX.

[47]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[48]  T. Lian,et al.  Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition , 2015, Science.

[49]  Hangqi Zhao,et al.  Distinguishing between plasmon-induced and photoexcited carriers in a device geometry , 2015, Nature Communications.

[50]  N. D. Mermin,et al.  Lindhard Dielectric Function in the Relaxation-Time Approximation , 1970 .

[51]  Stylianos Tzortzakis,et al.  Nonequilibrium electron dynamics in noble metals , 2000 .

[52]  Chem. , 2020, Catalysis from A to Z.

[53]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[54]  Mark L Brongersma,et al.  Hot-electron photodetection with a plasmonic nanostripe antenna. , 2014, Nano letters.

[55]  Din Ping Tsai,et al.  Plasmonic Photocatalyst for H2 Evolution in Photocatalytic Water Splitting , 2011 .

[56]  P. Schuck Nanoimaging: Hot electrons go through the barrier. , 2013, Nature nanotechnology.

[57]  G Chen,et al.  Ballistic-diffusive heat-conduction equations. , 2001, Physical review letters.

[58]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[59]  R. Guyer,et al.  Solution of the Linearized Phonon Boltzmann Equation , 1966 .

[60]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[61]  L. Brus Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. , 2008, Accounts of chemical research.

[62]  Martin Wolf,et al.  Femtochemistry at metal surfaces: nonadiabatic reaction dynamics. , 2006, Chemical reviews.

[63]  A. Furube,et al.  Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[64]  G. Rignanese,et al.  Band structure of gold from many-body perturbation theory , 2012, 1203.4508.

[65]  M. Handzic 5 , 1824, The Banality of Heidegger.

[66]  Andrew G. Glen,et al.  APPL , 2001 .

[67]  C. Yam,et al.  Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells. , 2016, The journal of physical chemistry letters.

[68]  Carsten Rockstuhl,et al.  A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. , 2008, Journal of the American Chemical Society.

[69]  O. Prezhdo,et al.  Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces. , 2015, Annual review of physical chemistry.

[70]  O. Prezhdo,et al.  Instantaneous generation of charge-separated state on TiO₂ surface sensitized with plasmonic nanoparticles. , 2014, Journal of the American Chemical Society.

[71]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[72]  Ericka Stricklin-Parker,et al.  Ann , 2005 .